【題目】已知函數(shù).
(1)求函數(shù)在區(qū)間上的最大值;
(2)若是函數(shù)圖像上不同的三點(diǎn),且,試判斷與之間的大小關(guān)系,并證明.
【答案】(1);(2),證明見解析.
【解析】試題分析:(1),分三種情況討論函數(shù)的單調(diào)性,進(jìn)而分別求得其在時(shí)的最大值; (2 )分別求出與用表示,做差后得關(guān)于的函數(shù),利用導(dǎo)數(shù)證明其大于零即可得結(jié)果.因?yàn)?/span>與在函數(shù)圖象上,所以把和的坐標(biāo)分別代入函數(shù)解析式中得
試題解析:(1),
當(dāng)時(shí), 時(shí), , ,
當(dāng)時(shí), 時(shí), , ,
當(dāng)時(shí),由,得, ,又,則有如下分類:
①當(dāng),即時(shí), 在上是增函數(shù),
所以.
②當(dāng),即時(shí), 在上是增函數(shù),
在上是減函數(shù),
所以
③當(dāng),即時(shí), 在上是減函數(shù),
所以
綜上,函數(shù)在上的最大值為
(2)
,
令, , ,
所以在上是增函數(shù),又,
當(dāng)時(shí), , , ,故
當(dāng)時(shí), , , ,故
綜上知, .
【方法點(diǎn)晴】本題主要考查的是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)研究函數(shù)的最值、不等式的恒成立和導(dǎo)數(shù)的幾何意義,屬于難題.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性進(jìn)一步求函數(shù)最值的步驟:①確定函數(shù)的定義域;②對(duì)求導(dǎo);③令,解不等式得的范圍就是遞增區(qū)間;令,解不等式得的范圍就是遞減區(qū)間;④根據(jù)單調(diào)性求函數(shù)的極值及最值(閉區(qū)間上還要注意比較端點(diǎn)處函數(shù)值的大。.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R.
(1)當(dāng)a=﹣4時(shí),且x∈[0,2],求函數(shù)f(x)的值域;
(2)若關(guān)于x的方程f(x)=0在(0,+∞)上有兩個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于某種商品開始收稅,使其定價(jià)比原定價(jià)上漲x成(即上漲率為 ),漲價(jià)后商品賣出的個(gè)數(shù)減少bx成,稅率是新價(jià)的a成,這里a,b均為常數(shù),且a<10,用A表示過去定價(jià),B表示過去賣出的個(gè)數(shù).
(1)設(shè)售貨款扣除稅款后,剩余y元,求y關(guān)于x的函數(shù)解析式;
(2)要使y最大,求x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為為上位于第一象限的任意一點(diǎn),過點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn).
(1)若當(dāng)點(diǎn)的橫坐標(biāo)為,且為等腰三角形,求的方程;
(2)對(duì)于(1)中求出的拋物線,若點(diǎn),記點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為交軸于點(diǎn),且,求證:點(diǎn)的坐標(biāo)為,并求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于, 兩點(diǎn),且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),與圖象的對(duì)稱軸相鄰的的零點(diǎn)為.
(Ⅰ)討論函數(shù)在區(qū)間上的單調(diào)性;
(Ⅱ)設(shè)的內(nèi)角,,的對(duì)應(yīng)邊分別為,,,且,,若向量與向量共線,求,的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)在點(diǎn)處的切線為,直線與軸相交于點(diǎn).若點(diǎn)的縱坐標(biāo)恒小于1,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的左、右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,OF1為半徑的圓與雙曲線在第一象限的交點(diǎn)為P,則當(dāng)△PF1F2的面積等于a2時(shí),雙曲線的離心率為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
(1)求f(x)的定義域及單調(diào)區(qū)間;
(2)求f(x)的最大值,并求出取得最大值時(shí)x的值;
(3)設(shè)函數(shù)g(x)=log4[(a+2)x+4],若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com