精英家教網 > 高中數學 > 題目詳情

【題目】由于某種商品開始收稅,使其定價比原定價上漲x成(即上漲率為 ),漲價后商品賣出的個數減少bx成,稅率是新價的a成,這里a,b均為常數,且a<10,用A表示過去定價,B表示過去賣出的個數.
(1)設售貨款扣除稅款后,剩余y元,求y關于x的函數解析式;
(2)要使y最大,求x的值.

【答案】
(1)解:定價上漲x成,即為A(1+ ),

賣出的個數為B(1﹣ ),售貨款扣除稅款后,

剩余y=AB(1+ )(1﹣ )(1﹣ ),(0<x<10)


(2)解:y=AB(1+ )(1﹣ )(1﹣

=AB(1﹣ )[﹣ +( )x+1],

,

令y′=0,得x=

x∈(0, )時,y′>0;當x∈( )時,y′<0.

∴ymax= =AB(1﹣

∴使y最大有x的值為


【解析】(1)定價上漲x成,即為A(1+ ),賣出的個數為B(1﹣ ),售貨款扣除稅款后,能求出y關于x的函數解析式.(2)由已知得 ,由此利用導數性質能求出使y最大的x的值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數g(x)= 是奇函數,f(x)=lg(10x+1)+bx是偶函數.
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】規(guī)定:投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀.根據以往經驗某選手投擲一次命中8環(huán)以上的概率為.現采用計算機做模擬實驗來估計該選手獲得優(yōu)秀的概率: 用計算機產生0到9之間的隨機整數,用0,1表示該次投擲未在 8 環(huán)以上,用2,3,4,5,6,7,8,9表示該次投擲在 8 環(huán)以上,經隨機模擬試驗產生了如下 20 組隨機數:

907 966 191 925 271 932 812 458 569 683

031 257 393 527 556 488 730 113 537 989

據此估計,該選手投擲 1 輪,可以拿到優(yōu)秀的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 )的左焦點與拋物線的焦點重合,直線與以原點為圓心,以橢圓的離心率為半徑的圓相切.

(Ⅰ)求該橢圓的方程;

(Ⅱ)設點坐標為,若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸長為 ,過右焦點F的直線l與C相交于A,B兩點.O為坐標原點.
(1)求橢圓C的方程;
(2)若點P在橢圓C上,且 = + ,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:方程 表示焦點在y軸上的橢圓,命題q:關于x的方程x2+2mx+2m+3=0無實根,
(1)若命題p為真命題,求實數m的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知y=ax2+bx(a<0)通過點(1,2),且其圖象與y=﹣x2+2x的圖象有二個交點(如圖所示).

(1)求y=ax2+bx與y=﹣x2+2x所圍成的面積S與a的函數關系;
(2)當a,b為何值時,S取得最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數在區(qū)間上的最大值;

(2)若是函數圖像上不同的三點,且,試判斷之間的大小關系,并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體中, 分別是線段的中點.

(1)求異面直線所成角的大小;

(2)求直線與平面所成角的大。

查看答案和解析>>

同步練習冊答案