A. | (-4,+∞) | B. | [-4,+∞) | C. | (-3,+∞) | D. | [-3,+∞) |
分析 利用等差數(shù)列的求和公式可得Sn=n2+(1+λ)n.再利用數(shù)列{Sn}為遞增數(shù)列,可得Sn+1>Sn,即可得出.
解答 解:Sn=$\frac{n(2+λ+2n+λ)}{2}$=n2+(1+λ)n.
∵數(shù)列{Sn}為遞增數(shù)列,∴Sn+1>Sn,
∴(n+1)2+(1+λ)(n+1)>n2+(1+λ)n.
化為:λ>-(2n+2),
∵數(shù)列{-(2n+2)}單調(diào)遞減,
∴n=1時(shí)取得最大值,
∴λ>-4,
∴實(shí)數(shù)λ的取值范圍為(-4,+∞).
故選:A.
點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式及其單調(diào)性、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ②④ | C. | ②③ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{33}}{6}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{3}}{6}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y2=2x | B. | y2=3x | C. | y2=4x | D. | y2=6x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com