A. | $\frac{\sqrt{33}}{6}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{3}}{6}$ | D. | $\frac{\sqrt{3}}{3}$ |
分析 以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系O-xyz,利用向量法能求出直線BC與AP所成的角的余弦值.
解答 如圖所示,以O(shè)為原點(diǎn)建立空間直角坐標(biāo)系O-xyz.
設(shè)OD=SO=OA=OB=OC=a,
則A(a,0,0),B(0,a,0),S(0,0,a),
C(-a,0,0),P(0,$\frac{a}{2}$,$\frac{a}{2}$).
則$\overrightarrow{BC}$=(-a,-a,0),$\overrightarrow{AP}$=(-a,$\frac{a}{2}$,$\frac{a}{2}$),
C=(a,a,0).
設(shè)直線BC與AP所成的角為θ,
則cosθ=$\frac{|\overrightarrow{BC}•\overrightarrow{AP}|}{|\overrightarrow{BC}|•|\overrightarrow{AP}|}$=$\frac{\frac{1}{2}{a}^{2}}{\sqrt{2}a•\sqrt{\frac{3}{2}}a}$=$\frac{\sqrt{3}}{6}$.
∴直線BC與AP所成的角的余弦值為$\frac{\sqrt{3}}{6}$.
故選:C.
點(diǎn)評 本題考查異面直線所成角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{512}$ | B. | -$\frac{341}{512}$ | C. | $\frac{1}{1024}$ | D. | $\frac{1}{2048}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,+∞) | B. | [-4,+∞) | C. | (-3,+∞) | D. | [-3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在x∈R,lgx=0 | B. | 存在x∈R,tanx=1 | C. | 任意的x∈R,x3>0 | D. | 任意的x∈R,2x>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 1.5 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-|x-1| | B. | y=x2-2x+4 | C. | y=ln(x+2) | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com