A. | $\frac{9}{5}$ | B. | $\frac{3}{2}$ | C. | $\frac{25}{16}$ | D. | $\frac{9}{4}$ |
分析 利用分式函數(shù)的性質(zhì),轉(zhuǎn)化為直線的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:由約束條件得到可行域如圖:則z=$\frac{3x-y+2}{x+1}$=3-$\frac{y+1}{x+1}$,
則z的幾何意義是區(qū)域內(nèi)的點到定點M(-1,-1)的斜率的最小值的相反數(shù)與3的和,
由圖象可知區(qū)域邊界點A(1.5,2)連接的直線斜率最小為$\frac{6}{5}$,所以z的最大值為3-$\frac{6}{5}$=$\frac{9}{5}$;
故選:A.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,關(guān)鍵是把目標(biāo)函數(shù)變形,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${x^2}+\frac{{3{y^2}}}{2}=1$ | B. | ${x^2}+\frac{{6{y^2}}}{5}=1$ | C. | ${x^2}+\frac{{5{y^2}}}{4}=1$ | D. | ${x^2}+\frac{{8{y^2}}}{7}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{6}$ | B. | 3$\sqrt{6}$ | C. | 2 | D. | 5$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com