【題目】如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CEACEFAC,AB=,

(1)求證:CF⊥平面BDE

(2)求二面角A-BE-D的大小。

【答案】(1)見證明;(2) (或

【解析】

1)連接FG,可證得四邊形CEFG為菱形,故得.再根據(jù)平面ABCD平面ACEF得到平面ACEF,從而.由線面垂直的判定定理可得結論成立.(2)建立空間直角坐標系,求出平面BDE和平面ABE的法向量,求出兩向量的夾角的余弦值并結合圖形可得所求角的大。

(1)連接FG,

,

∴四邊形CEFG為菱形,

.

∵ABCD為正方形,

,

又平面ABCD平面ACEF,平面ABCD平面ACEF=AC,BD平面ABCD

平面ACEF,

∵CF平面ACEF,

,BD平面BDE, BG平面BDE,

平面BDE.

(1)∵正方形ABCD和四邊形ACEF所在的平面互相垂直,且CE⊥AC,

∴CE⊥平面ABCD,

以C為原點,CB為軸,CD為軸,CE為軸,建立如圖所示的空間直角坐標系,

,,

由(1)可得是平面BDE的一個法向量.

設平面ABE的一個法向量為

,得,

,得

,

由圖形可得二面角A-BE-D為銳角,

∴二面角A-BE-D的大小為(或).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知平面α及直線ab,則下列說法正確的是(  )

A. 若直線a,b與平面α所成角都是30°,則這兩條直線平行

B. 若直線a,b與平面α所成角都是30°,則這兩條直線不可能垂直

C. 若直線a,b平行,則這兩條直線中至少有一條與平面α平行

D. 若直線a,b垂直,則這兩條直線與平面α不可能都垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點的坐標為.

(1)求點的坐標;

(2)求函數(shù)的單調增區(qū)間及對稱軸方程;

(3)若把方程的正實根從小到大依次排列為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若關于的方程只有一個實數(shù)解,求實數(shù)的取值范圍;

(2)若當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)是定義在上的偶函數(shù),當時,

1)求的函數(shù)解析式;

2)作出的草圖,并求出當函數(shù)個不同零點時,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓方程為,射線與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A,B兩點(異于M).

(1)求證:直線AB的斜率為定值;

(2)求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形,,,現(xiàn)將沿折起,當二面角的大小在時,直線所成角為,則的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解高一學生暑假里在家讀書情況,特隨機調查了50名男生和50名女生平均每天的閱讀時間(單位:分鐘),統(tǒng)計如下表:

(1)根據(jù)統(tǒng)計表判斷男生和女生誰的平均讀書時間更長?并說明理由;

(2)求100名學生每天讀書時間的平均數(shù),并將每天平均時間超過和不超過平均數(shù)的人數(shù)填入下列的列聯(lián)表:

(3)根據(jù)(2)中列聯(lián)表,能否有99%的把握認為“平均閱讀時間超過或不超過平均數(shù)是否與性別有關?”

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;

( Ⅱ ) 設直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設點,代入向量,利用三角函數(shù)的值域來求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標方程為.

(Ⅱ)由直線的方程可得點,點.

設點,則 .

.

由(Ⅰ)知,則 .

因為,所以.

型】解答
束】
23

【題目】選修4-5:不等式選講

已知函數(shù), .

(Ⅰ)若對于任意, 都滿足,求的值;

(Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案