用秦九韶算法求多項(xiàng)式f(x)=0.5x5+4x4-3x2+x-1,當(dāng)x=3的值時(shí),v1=( 。
A、3×3=9
B、0.5×35=121.5
C、0.5×3+4=5.5
D、(0.5×3+4)×3=16.5
考點(diǎn):秦九韶算法
專題:算法和程序框圖
分析:利用秦九韶算法可得:f(x)=((((0.5x+4)x+0)x-3)x+1)x-1,將x=3代入即可得出v1
解答: 解:∵f(x)=0.5x5+4x4-3x2+x-1)=((((0.5x+4)x+0)x-3)x+1)x-1,
當(dāng)x=3時(shí),
v0=0.5,
v1=0.5×3+4=5.5,
故選:C.
點(diǎn)評(píng):本題考查了秦九韶算法,屬于基礎(chǔ)題,熟練掌握秦九韶算法計(jì)算多項(xiàng)式值的步驟是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)邊分別為a,b,c.求證:b2-c2=a(bcosC-ccosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,若存在m、n∈N+,使
Sm
Sn
=
m2-2m
n2-2n
,則
am
an
=( 。
A、
2m-1
2n-1
B、
2m+1
2n+1
C、
2m-3
2n-3
D、
m-2
n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a-
2
(
1
2
)
x
+b
是R上的奇函數(shù),且f(-1)=
1
3

(1)確定函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)試判斷f(x)在R上的單調(diào)性,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以雙曲線
x2
4
-
y2
9
=1的右頂點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程是(  )
A、y2=4x
B、y2=16x
C、y2=8x
D、y2=-8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,首項(xiàng)a1=1,公差d=3,當(dāng)an=298時(shí),序號(hào)n=(  )
A、96B、99
C、100D、101

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,a5•a11=3,a3+a13=4,則
a25
a5
=( 。
A、3
B、9
C、3或
1
3
D、9或
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
1-
x2
2
=x+m
有實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案