考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(I)考慮由函數(shù)f′(x)正負(fù)求出的單調(diào)區(qū)間;
(Ⅱ)令h(a)=f(1)-f(-1)=a-
-2lna,通過研究h(a)的單調(diào)性得出h(a)的正負(fù)性,確定f(1)與f(-1)的大小關(guān)系;
(Ⅲ)由(Ⅱ)知,當(dāng)a>1時(shí),f(x)
max=f(1)=a+1-lna,由題意知,f(x)
max-f(x)
min≤e-1,
即a+1-lna-1≤e-1,a-lna-e+1≤0,求得a∈(1,e].當(dāng)0<a<1時(shí),f(x)
max=f(-1)=
+1+lna,由題意知,f(x)
max-f(x)
min≤e-1,得a∈[
,1).
解答:
解:(Ⅰ)f′(x)=a
xlna+2x-lna,令g(x)=f′(x)=a
xlna+2x-lna,則g′(x)=a
xln2a+2>0,∴g(x)為(-∞,+∞)上的增函數(shù).
又∵g(0)=0,∴當(dāng)x>0時(shí),g(x)>g(0)=0,即f′(x)>0,當(dāng)x<0時(shí),g(x)<g(0)=0,即f′(x)<0.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間為(-∞,0).
(Ⅱ)f(1)-f(-1)=a+1-lna-
-1-lna=a-
-2lna,
設(shè)h(a)=a-
-2lna,則h′(a)=1+
-
=
=
>0.
故h(a)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞增,
當(dāng)a∈(0,1)時(shí),h(a)<h(1)=0,即f(1)<f(-1),
當(dāng)a∈(1,+∞)時(shí),h(a)>h(1)=0,即f(1)>f(-1).
(Ⅲ)當(dāng)x∈[-1,1]時(shí),
由(Ⅰ)知,f(x)
min=f(0)=1,f(x)
max=max{f(-1),f(1)},
由(Ⅱ)知,當(dāng)a>1時(shí),f(x)
max=f(1)=a+1-lna,
由題意知,f(x)
max-f(x)
min≤e-1,
即a+1-lna-1≤e-1,a-lna-e+1≤0,(a∈(1,+∞)).
設(shè)F(a)=a-lna-e+1,則F′(a)=1-
=
>0,
故F(a)在(1,+∞)單調(diào)遞增.
又∵F(e)=e-1-e+1=0,由F(a)≤0,得a∈(1,e].①
當(dāng)0<a<1時(shí),f(x)
max=f(-1)=
+1+lna,
由題意知,f(x)
max-f(x)
min≤e-1,
即
+1+lna-1≤e-1,也就是
+lna-e+1≤0,
設(shè)F(a)=
+lna-e+1,則F′(a)=-
+
=
<0,
故F(a)在(0,1)單調(diào)遞減.
又∵F(
)=e-1-e+1=0,由F(a)≤0,得a∈[
,1).②
綜合①②可得a∈[
,1)∪(1,e].
點(diǎn)評:本題是函數(shù)與導(dǎo)數(shù)綜合題目,考查導(dǎo)數(shù)知識的綜合運(yùn)用,考查函數(shù)的單調(diào)性,恒成立問題,考查分析解決問題的能力.