分析 (1)利用同角三角函數(shù)的基本關(guān)系求得sinα的值,可得tanα的值,再利用二倍角公式求得tan3α的值.
(2)利用兩角和的余弦公式求得cos(α+$\frac{π}{3}$)的值.
解答 解:(1)∵cosα=-$\frac{4}{5}$,α∈($\frac{π}{2}$,π),∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{3}{5}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,∴tan2α=$\frac{2tanα}{{1-tan}^{2}α}$=$\frac{-\frac{6}{4}}{1-\frac{9}{16}}$=-$\frac{24}{7}$.
(2)cos(α+$\frac{π}{3}$)=cosαcos$\frac{π}{3}$-sinαsin$\frac{π}{3}$=-$\frac{2}{5}$-$\frac{3\sqrt{3}}{10}$=$\frac{-4-3\sqrt{3}}{10}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式、兩角差和的余弦公式的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{19}{41}$ | B. | $\frac{3}{7}$ | C. | $\frac{7}{15}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com