15.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+2$\overrightarrow$)=-2,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

分析 利用向量的數(shù)量積轉(zhuǎn)化求解即可.

解答 解:向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+2$\overrightarrow$)=-2,
可得:${\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow-2{\overrightarrow}^{2}$=-2.
解得$\overrightarrow{a}•\overrightarrow$=-3.
則$|\overrightarrow{a}||\overrightarrow|cos<\overrightarrow{a},\overrightarrow>$=-3,
cos$<\overrightarrow{a},\overrightarrow>$=-$\frac{1}{2}$,
∴$<\overrightarrow{a},\overrightarrow>$=$\frac{2π}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的應(yīng)用,向量的夾角的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=x2+ln|x|的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題的否定是真命題的是( 。
A.?x0∈R,x${\;}_{0}^{2}$+2x0+2=0B.若f(x)是奇函數(shù),則f(-x)是奇函數(shù)
C.?x∈R,x2-x+$\frac{1}{4}$≥0D.任意兩個(gè)等邊三角形都是相似的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)y=f(x)滿足2f(x)-f($\frac{1}{x}$)=x,則函數(shù)f(x)=$\frac{2}{3}x+\frac{1}{3x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.運(yùn)動(dòng)會(huì)上,有6名選手參加100米比賽,觀眾甲猜測:4道或5道的選手得第一名;觀眾乙猜:3道的選手不可能得第一名;觀眾丙猜測:1,2,6道中的一位選手得第一名;觀眾丁猜測:4,5,6道的選手都不可能得第一名.比賽后發(fā)現(xiàn)沒有并列名次,且甲、乙、丙、丁中只有1人猜對(duì)比賽結(jié)果,此人是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.秦九韶算法是中國南宋時(shí)期的數(shù)學(xué)家秦九韶提出的一種求多項(xiàng)式值的簡化算法,其求一個(gè)n次多項(xiàng)式f(x)=anxn+an-1xn-1+…+a1x+a0值的算法是:v0=an,v1=v0x+an-1,v2=v1x+an-2,v3=v2x+an-3,…,vn=vn-1x+a0,vn為所求f(x)的值,利用秦九韶算法,計(jì)算f(x)=2x5+x4+3x3+2x2+x+1當(dāng)x=2時(shí)的值時(shí),v2的值為( 。
A.2B.5C.13D.115

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合A={x|-1≤x<2},B={x|x2<1},則A∩B=( 。
A.{x|1<x<2}B.{x|-1<x<1}C.{x|-1≤x<2}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)直線L1:(m-2)x+3y+2m=0,L2:x+my+6=0,當(dāng)m=m≠-1且m≠3時(shí),L1與L2相交;當(dāng)m-1時(shí),L1∥L2;當(dāng)m$\frac{1}{2}$時(shí),L1⊥L2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知α∈(0,π ),且sinα+cosα=$\frac{7}{13}$,則tanα=-$\frac{12}{5}$;sin2α-sinαcosα-2cos2α=$\frac{154}{169}$.

查看答案和解析>>

同步練習(xí)冊答案