6.正四棱錐P-ABCD的底面邊長為6,∠PBD=45°,求它的體積和全面積.

分析 由題意畫出圖形,求出正四棱錐的高與斜高,代入體積公式及全面積公式得答案.

解答 解:如圖,

在正四棱錐P-ABCD中,∵底面邊長AB=6,∴BD=$6\sqrt{2}$,則BO=$3\sqrt{2}$,
又∠PBD=45°,∴PO=$3\sqrt{2}$,則斜高h(yuǎn)=$\sqrt{P{O}^{2}+(\frac{1}{2}AB)^{2}}=\sqrt{18+9}=3\sqrt{3}$,
∴${V}_{P-ABCD}=\frac{1}{3}×6×6×3\sqrt{2}=36\sqrt{2}$,
正四棱錐P-ABCD的全面積S=6×6+4×$\frac{1}{2}×6×3\sqrt{3}$=36+36$\sqrt{3}$.

點評 本題考查正四棱錐的體積與全面積的求法,考查空間想象能力和思維能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.圓心坐標(biāo)為(-1,-1)且過原點的圓的方程是( 。
A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題中真命題的個數(shù)為( 。
①面積相等的三角形是全等三角形;
②若xy=0,則|x|+|y|=0;
③若a>b,則a+c>b+c;
④矩形的對角線互相垂直.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出以下命題:
①若f′(x0)=0,則f(x0)為f(x)的極值.
②若f(x)的極大值為f(x1),f(x)的極小值為f(x2),則f(x1)>f(x2);
③△ABC中,若sin2A+sin2B<sin2C,則△ABC是鈍角三角形;
④若函數(shù)f(x)=cos2x+asinx在區(qū)間$(\frac{π}{4},\frac{π}{2})$是減函數(shù),則a∈$({-∞,2\sqrt{2}}]$
⑤設(shè)△ABC的三邊長分別為a、b、c,△ABC的面積為S,內(nèi)切圓半徑為r,則r=$\frac{2S}{a+b+c}$;類比這個結(jié)論可知:四面體S-ABC的四個面的面積分別為S1、S2、S3、S4,內(nèi)切球的半徑為R,四面體P-ABC的體積為V,則R=$\frac{3V}{S_1+S_2+S_3+S_4}$
其中正確命題的序號為③④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知x,y滿足(x+2)2+(y-2)2=3,則x2+y2的最大值是11+4$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.到直線2x+y+1=0的距離為$\frac{{\sqrt{5}}}{5}$的點的集合為( 。
A.直線2x+y-2=0B.直線2x+y=0
C.直線2x+y=0或2x+y-2=0D.直線2x+y=0或直線2x+2y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,該程序運行后輸出的結(jié)果為19.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C所對的邊分別是a,b,c且$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=-sin2C.
(1)求角C的大;
(2)若c=2$\sqrt{3}$,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某市居民用水?dāng)M實行階梯水價,每人月用水量中不超過w立方米的部分按4元/立方米收費,超出w立方米的部分按10元/立方米收費,從該市隨機調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如圖頻率分布直方圖:

(1)求a;
(2)根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4元/立方米,w至少定為多少?(保留小數(shù)點后一位小數(shù))
(3)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,估計該市居民該月的人均用水量.(保留小數(shù)點后一位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案