【題目】如圖,橢圓 的焦距與橢圓 的短軸長相等,且的長軸長相等,這兩個橢圓在第一象限的交點為,直線經(jīng)過軸正半軸上的頂點且與直線為坐標(biāo)原點)垂直, 的另一個交點為, 交于, 兩點.

(1)求的標(biāo)準(zhǔn)方程;

(2)求.

【答案】(1).(2).

【解析】試題分析:(1)由橢圓 )的焦距與橢圓 的短軸長相等,且的長軸長相等,可得,所以從而可得的標(biāo)準(zhǔn)方程;(2)聯(lián)立兩橢圓方程可得點坐標(biāo),利用垂直關(guān)系可得的斜率,由點斜式可得的方程為,直線方程分別與橢圓方程聯(lián)立,利用韋達定理與弦長公式分別求出、,從而可得結(jié)果.

試題解析:(1)由題意可得所以

的標(biāo)準(zhǔn)方程為

2)聯(lián)立

,,

易知 的方程為

聯(lián)立,

,

聯(lián)立

設(shè), ,則, ,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1),上的單調(diào)區(qū)間;

(2), 均恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右有頂點分別是、,上頂點是,圓的圓心到直線的距離是,且橢圓的右焦點與拋物線的焦點重合.

(Ⅰ)求橢圓的方程;

(Ⅱ)平行于軸的動直線與橢圓和圓在第一象限內(nèi)的交點分別為、,直線、軸的交點記為,.試判斷是否為定值,若是,證明你的結(jié)論.若不是,舉反例說明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),若對于,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺中, , 分別是, 的中點, 平面, 是等邊三角形, , ,.

(1)證明: 平面;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線斜率為2.

(Ⅰ)求的單調(diào)區(qū)間和極值;

(Ⅱ)若上無解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).

(1)寫出曲線的極坐標(biāo)方程,并求交點的極坐標(biāo);

(2)射線與曲線分別交于點異于原點),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:

1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);

2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙二人進行一次圍棋比賽,每局勝者得1分,負(fù)者得0分,約定一方比另一方多3分或滿9局時比賽結(jié)束,并規(guī)定:只有一方比另一方多三分才算贏,其它情況算平局,假設(shè)在每局比賽中,甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立,已知前3局中,甲勝2局,乙勝1局.

(1) 求甲獲得這次比賽勝利的概率;

(2)設(shè)表示從第4局開始到比賽結(jié)束所進行的局?jǐn)?shù),求得分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案