分析 由題意,本題符合幾何概型,以(a,b)滿足的區(qū)域面積比求概率.
解答 解:設(shè)分別在區(qū)間[0,1]、[1,e]上任取a,b,得到的對應(yīng)點(diǎn)為(a,b),對應(yīng)區(qū)域面積為e,
則在區(qū)間[0,1]、[1,e]前提下,隨機(jī)事件a≥lnb的區(qū)域面積等于在區(qū)間[0,1]、[1,e]上的b≤ea對應(yīng)的區(qū)域,
面積為:${∫}_{0}^{1}({e}^{a}-1)da$=e-2,
由幾何概型公式得到隨機(jī)事件a≥lnb的概率為:$\frac{e-2}{e}=1-\frac{2}{e}$;
故答案為:1-$\frac{2}{e}$.
點(diǎn)評 本題考查了幾何概型公式的運(yùn)用;解答本題的關(guān)鍵是明確滿足a≥lnb的區(qū)域面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | R | B. | [1,5] | C. | (-∞,-1]∪[5,+∞) | D. | {(-$\sqrt{2}$,3)($\sqrt{2}$,3)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com