11.“a<1,b=-4”是“圓x2+y2-2x+6y+5a=0關(guān)于直線y=x+b對稱”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)圓的對稱性結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:因?yàn)閳Ax2+y2-2x+6y+5a=0關(guān)于直線y=x+b對稱,所以圓心(1,-3)在直線y=x+b上,所以-3=1+b,所以b=-4,
由圓x2+y2-2x+6y+5a=0得4+36-20a>0,
所以a<2,
所以充要條件是a<2,b=-4,易知選A,
故選:A.

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,結(jié)合圓的對稱性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.P(x,y)是曲線$\left\{\begin{array}{l}x=-2+cosθ\\ y=sinθ\end{array}$(0≤θ<π,θ是參數(shù))上的動點(diǎn),則$\frac{y}{x}$的取值范圍是(  )
A.[-$\frac{\sqrt{3}}{3}$,0]B.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]C.[0,$\frac{\sqrt{3}}{3}$]D.(-∞,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f(0)=0.若對任意x∈R,都有f(x)>f′(x)+1,則使得f(x)+ex<1成立的x的取值范圍為(  )
A.(-∞,0)B.(-∞,1)C.(-1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且(2b-c)cosA=acosC,
(1)求A;
(2)若a=2$\sqrt{3}$,求△ABC的BC邊上高的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個幾何體的三視圖如圖所示,則該幾何體的體積等于( 。
A.16B.24C.48D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知正項(xiàng)數(shù)列{an}滿足a1=1,且an+1=$\frac{a_n}{{2{a_n}+1}}(n∈{N^*})$.
(1)證明數(shù)列$\{\frac{1}{a_n}\}$為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(-1)n•n•an•an+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實(shí)數(shù)x、y滿足條件$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y-2≥0}\end{array}\right.$,則$\frac{y+1}{x+4}$的取值范圍為[$\frac{1}{6}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.甲、乙兩名學(xué)生的六次數(shù)學(xué)測試成績(百分制)如圖所示.
①甲同學(xué)成績的中位數(shù)大于乙同學(xué)成績的中位數(shù);
②甲同學(xué)的平均分比乙同學(xué)高;
③甲同學(xué)的平均分比乙同學(xué)低;
④甲同學(xué)成績的標(biāo)準(zhǔn)差小于乙同學(xué)成績的標(biāo)準(zhǔn)差.
上面說法正確的是( 。
A.③④B.①②C.②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程為$y=\frac{3}{4}x$,則雙曲線的離心率為( 。
A.$\frac{5}{3}$B.$\frac{{\sqrt{21}}}{3}$C.$\frac{5}{4}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案