求函數(shù)f(x)=
ex+e-x
2
的極小值點(diǎn).
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),求出導(dǎo)數(shù)為0的根,求出單調(diào)區(qū)間,即可得到極值點(diǎn).
解答: 解:函數(shù)f(x)=
ex+e-x
2
的導(dǎo)數(shù)f′(x)=
1
2
(ex-e-x),
令f′(x)=0,則ex=e-x,解得,x=0,
當(dāng)x>0時(shí),f′(x)>0,f(x)遞增,
當(dāng)x<0時(shí),f′(x)<0,f(x)遞減,
則有x=0為f(x)的極小值點(diǎn).
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)用:求極值,考查指數(shù)函數(shù)的單調(diào)性和運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx;
(1)當(dāng)a=1時(shí),若直線y=b與函數(shù)y=f(x)的圖象在[
1
2
,2]
上有兩個(gè)不同交點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求正實(shí)數(shù)a的取值范圍;
(3)求證:對(duì)大于1的任意正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+…+
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)M(1,1)位于橢圓
x2
4
+
y2
2
=1
內(nèi),過(guò)點(diǎn)M的直線與橢圓交于兩點(diǎn)A、B,且M點(diǎn)為線段AB的中點(diǎn),求直線AB的方程及
|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的斜截圓柱中,已知圓柱底面的直徑為40cm,母線長(zhǎng)最短50cm,最長(zhǎng)80cm,則斜截圓柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-2x2+x,g(x)=x2+x+a,若函數(shù)y=f(x)與y=g(x)的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某文具店購(gòu)進(jìn)一批新型臺(tái)燈,若按每盞臺(tái)燈15元的價(jià)格銷售.每天能賣出30盞,若售價(jià)每提高1元,日銷售量將減少2盞.
(1)設(shè)這批臺(tái)燈提價(jià)后每盞的銷售價(jià)格定為x,銷售收入為y,寫出y=f(x).
(2)為了使這批臺(tái)燈每天獲得400元以上的銷售收入,問(wèn)應(yīng)如何制定這批臺(tái)燈每盞的銷售價(jià)格范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某汽車運(yùn)輸公司,購(gòu)買了一批豪華大客車投入客運(yùn),據(jù)市場(chǎng)分析,每輛客車營(yíng)運(yùn)的總利潤(rùn)y (萬(wàn)元)與營(yíng)運(yùn)年數(shù)x(x∈N*)的關(guān)系為y=-x2+12x-25,為了使每輛客車營(yíng)運(yùn)的年平均利潤(rùn)最大,則每輛客車應(yīng)營(yíng)運(yùn)
 
年.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
2x-y+2≥0
x+y-2≤0
y-1≥0
,則x2+y2-10x-8y+41的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|3≤3x≤27},B={x|log 
1
2
x>
1
4
}
(1)求(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案