某汽車運輸公司,購買了一批豪華大客車投入客運,據(jù)市場分析,每輛客車營運的總利潤y (萬元)與營運年數(shù)x(x∈N*)的關系為y=-x2+12x-25,為了使每輛客車營運的年平均利潤最大,則每輛客車應營運
 
年.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:先求出每輛車的年平均利潤為
y
x
=-(x+
25
x
)+12
,所以根據(jù)基本不等式即可求得當x=5時,
y
x
取到最大值.
解答: 解:由已知條件每輛車營運的年平均利潤為:
y
x
=-(x+
25
x
)+12
;
x+
25
x
≥10

-(x+
25
x
)+12≤2
,當x=
25
x
,即x=5時取“=”;
∴每輛車應營運5年.
故答案為:5.
點評:考查對年平均利潤與總利潤的理解,以及基本不等式的運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓方程
x2
4
+
y2
2
=1及橢圓上一點P(x0,y0),P關于y=2x的對稱點(x1,y1),求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

滿足下列條件,能說明空間不重合的A,B,C三點共線的是(  )
A、
AB
+
BC
=
AC
B、
AB
-
BC
=
AC
C、
AB
=
BC
D、|
AB
|=|
BC
|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=
ex+e-x
2
的極小值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

今年冬季,我國大部分地區(qū)遭遇霧霾天氣,給人們的健康、交通安全等帶來了嚴重影響.經(jīng)研究,發(fā)現(xiàn)工業(yè)廢氣等污染物排放是霧霾形成和持續(xù)的重要因素,污染治理刻不容緩.為此,某工廠新購置并安裝了先進的廢氣處理設備,使產(chǎn)生的廢氣經(jīng)過過濾后排放,以降低對空氣的污染.已知過濾過程中廢氣的污染物數(shù)量P(單位:mg/L)與過濾時間t(單位:小時)間的關系為P(t)=P0e-k t(P0,k均為非零常數(shù),e為自然對數(shù)的底數(shù)),其中P0為t=0時的污染物數(shù)量.若經(jīng)過5小時過濾后還剩余90%的污染物.
(Ⅰ)求常數(shù)k的值;
(Ⅱ)試計算污染物減少到40%至少需要多少時間(精確到1小時,參考數(shù)據(jù):ln0.2≈-1.61,ln0.3≈-1.20,ln0.4=-0.92,ln0.5=-0.69,ln0.9≈-0.11).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
b
均為單位向量,其夾角為θ,如果|
a
-
b
|>1,則θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
x2
x+1
在點(1,
1
2
)
處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=a-bsin4x(b>0)的最大值是5,最小值是1,則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=2,an+1=an2+6an+6(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=
1
an-6
-
1
an2+6an
,數(shù)列{bn}的前n項和為Tn,求證:-
5
16
≤Tn<-
1
4

查看答案和解析>>

同步練習冊答案