如圖所示,已知點(diǎn)P是正方體ABCD﹣A1B1C1D1的棱A1D1上的一個(gè)動(dòng)點(diǎn),設(shè)異面直線AB與CP所成的角為α,則cosα的最小值是 _________ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
演繹推理“因?yàn)閷?duì)數(shù)函數(shù)y=logax(a>0且a≠1)是增函數(shù),而函數(shù)是對(duì)數(shù)函數(shù),所以是增函數(shù)”所得結(jié)論錯(cuò)誤的原因是( )
| A. | 大前提錯(cuò)誤 | B. | 小前提錯(cuò)誤 |
| C. | 推理形式錯(cuò)誤 | D. | 大前提和小前提都錯(cuò)誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某款手機(jī)的廣告宣傳費(fèi)用x(單位萬元)與利潤(rùn)y(單位萬元)的統(tǒng)計(jì)數(shù)據(jù)如下表:
廣告宣傳費(fèi)用x | 6 | 5 | 7 | 8 |
利潤(rùn)y | 34 | 26 | 38 | 42 |
根據(jù)上表可得線性回歸方程中的為9.4,據(jù)此模型預(yù)報(bào)廣告宣傳費(fèi)用為10萬元時(shí)利潤(rùn)為
A.65.0萬元 B.67.9萬元 C.68.1萬元 D.68.9萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)(其中,t為常數(shù)),的圖象如圖所示.
(1)根據(jù)圖象求a、b、c的值;
(2)求陰影面積S關(guān)于t的函數(shù)S(t)的解析式;
(3)若問是否存在實(shí)數(shù)m, 使得
的圖象與的圖象有且只有三個(gè)不同的
交點(diǎn)?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在某個(gè)城市中,M,N兩地之間有南北街道5條、東西街道4條,現(xiàn)要求沿圖中的街道,以最短的路程從M走到N,則不同的走法共有 _________ 種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某同學(xué)參加高二學(xué)業(yè)水平測(cè)試的4門必修科目考試.已知該同學(xué)每門學(xué)科考試成績(jī)達(dá)到“A”等級(jí)的概率均為,且每門考試成績(jī)的結(jié)果互不影響.
(1)求該同學(xué)至少得到兩個(gè)“A”的概率;
(2)已知在高考成績(jī)計(jì)分時(shí),每有一科達(dá)到“A”,則高考成績(jī)加1分,如果4門學(xué)科均達(dá)到“A”,則高考成績(jī)額外再加1分.現(xiàn)用隨機(jī)變量Y表示該同學(xué)學(xué)業(yè)水平測(cè)試的總加分,求Y的概率分別列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知{an}是公比為q的等比數(shù)列,且a1,a3,a2成等差數(shù)列,則q= ( )
A.1或- B.1 C.- D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
將數(shù)列中的所有項(xiàng)按每一行比上一行多兩項(xiàng)的規(guī)則排成如下數(shù)表:
已知表中的第一列數(shù)構(gòu)成一個(gè)等差數(shù)列, 記為, 且, 表中每一行正中間一個(gè)數(shù)構(gòu)成數(shù)列, 其前n項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)若上表中, 從第二行起, 每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列, 公比為同一個(gè)正數(shù), 且.①求;②記, 若集合M的元素個(gè)數(shù)為3, 求實(shí)數(shù)的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com