11.已知曲線C的極坐標(biāo)方程為ρ-4cosθ=0,在以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸的直角坐標(biāo)系中,曲線D的參數(shù)方程為$\left\{\begin{array}{l}x=2\sqrt{3}cosβ\\ y=-2\sqrt{3}+2\sqrt{3}sinβ\end{array}\right.(β$為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和曲線D的普通方程;
(2)過原點(diǎn)且傾斜角為α($\frac{π}{6}$≤α<$\frac{π}{2}$)的直線l與曲線C,D分別相交于M,N兩點(diǎn)(M,N異于原點(diǎn)),求|OM|+|ON|的取值范圍.

分析 (1)根據(jù)極坐標(biāo)方程、參數(shù)方程與普通方程的對應(yīng)關(guān)系即可得出答案;
(2)求出曲線D的極坐標(biāo)方程,從而可得出|OM|,|ON|關(guān)于θ的表達(dá)式,根據(jù)三角恒等變換與θ的范圍可得出|OM|+|ON|的取值范圍.

解答 解:(1)曲線C的極坐標(biāo)方程可化為:ρ2-4ρcosθ=0,
∴曲線C的普通方程為x2+y2-4x=0,即(x-2)2+y2=4.
由曲線D的參數(shù)方程可得$\left\{\begin{array}{l}{2\sqrt{3}cosβ=x}\\{2\sqrt{3}sinβ=y+2\sqrt{3}}\end{array}\right.$,∴曲線D的普通方程為x2+(y+2$\sqrt{3}$)2=12.
(2)曲線D的極坐標(biāo)方程為ρ+4$\sqrt{3}$sinθ=0,
∴|OM|=4cosθ,|ON|=-4$\sqrt{3}$sin(θ+π)=4$\sqrt{3}$sinθ,
∴|OM|+|ON|=4cosθ+4$\sqrt{3}$sinθ=8sin(θ+$\frac{π}{6}$),
∵$\frac{π}{6}$≤α<$\frac{π}{2}$,∴$\frac{π}{3}$≤θ+$\frac{π}{6}$<$\frac{2π}{3}$,
∴$\frac{\sqrt{3}}{2}$≤8sin(θ+$\frac{π}{6}$)≤1,
∴|OM|+|ON|的取值范圍是[4$\sqrt{3}$,8].

點(diǎn)評 本題考查了參數(shù)方程、極坐標(biāo)方程與普通方程的轉(zhuǎn)化,極坐標(biāo)方程的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.方程x2-y2=0表示的圖形是(  )
A.兩條相交但不垂直的直線B.兩條垂直直線
C.兩條平行直線D.一個(gè)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一射手對同一目標(biāo)獨(dú)立地射擊四次,已知至少命中一次的概率為$\frac{80}{81}$,則此射手每次射擊命中的概率( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題錯(cuò)誤的是(  )
A.兩個(gè)向量的和仍是一個(gè)向量
B.當(dāng)向量$\overrightarrow{a}$與向量$\overrightarrow$不共線時(shí),$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$,$\overrightarrow$都不同向,且|$\overrightarrow{a}$+$\overrightarrow$|<|$\overrightarrow{a}$|+|$\overrightarrow$|
C.當(dāng)非零向量$\overrightarrow{a}$,$\overrightarrow$同向時(shí),$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$,$\overrightarrow$都同向,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|
D.當(dāng)非零向量$\overrightarrow{a}$,$\overrightarrow$反向時(shí),$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$或$\overrightarrow$反向,且|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.中國有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進(jìn)行計(jì)算,算籌是將幾寸長的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如下表:

表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是:,則算籌式表示的數(shù)字為368.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=m+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=12.直線l過點(diǎn)$(-2\sqrt{2},0)$.
(Ⅰ)若直線l與曲線C交于A,B兩點(diǎn),求|FA|•|FB|的值;
(Ⅱ)求曲線C的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示的程序框圖運(yùn)行的結(jié)果是( 。
A.$\frac{1007}{2015}$B.$\frac{2014}{2015}$C.$\frac{2016}{2017}$D.$\frac{1008}{2017}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度,建立極坐標(biāo)系.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}+2cosα}\\{y=3+2sinα}\end{array}\right.$(α∈[0,2π],α為參數(shù)),曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{3}$)=a(a∈R).若曲線C1與曲線C2有且僅有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系中.以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系已知曲線C:pcos2θ=2asinθ(a>0)過點(diǎn)P(-4,-2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=-2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))直線l與曲線C分別交于點(diǎn)M,N.
(1)寫出C的直角坐標(biāo)方程和l的普通方程;
(2)若丨PM丨,丨MN丨,丨PN丨成等比數(shù)列,求a的值.

查看答案和解析>>

同步練習(xí)冊答案