【題目】已知函數(shù)且.
(Ⅰ) 若1是關于x的方程的一個解,求t的值;
(Ⅱ) 當且時,解不等式;
(Ⅲ)若函數(shù)在區(qū)間(-1,2]上有零點,求t的取值范圍.
【答案】(Ⅰ) (Ⅱ) (Ⅲ) 或
【解析】
試題分析:(Ⅰ)由,即可求得的值;
(Ⅱ)當時,當時,即,利用對數(shù)函數(shù)的單調(diào)性可得真數(shù)間的大小關系,注意對數(shù)函數(shù)的定義域;
(Ⅲ)分情況討論:若,則在上沒有零點,當時,分在內(nèi)有重根,則△=0,解得的值;在上只有一個零點,且不是方程的重根時;在上有兩個相異實根三種情況,根據(jù)函數(shù)零點判定定理可得不等式,解出即可;
試題解析:(Ⅰ)∵若1是關于的方程的解, ,又.
(Ⅱ) 時,,又,∴解集為:;
(Ⅲ)若,則在上沒有零點.下面就時分三種情況討論:方程在上有重根,則,解得;①
在上只有一個零點,且不是方程的重根,則有,解得,又經(jīng)檢驗:時,在上都有零點,.②;在上有兩個相異實根,則有:
或,解得,③;綜合①②③可知的取值范圍為或
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為 與p,且乙投球2次均未命中的概率為 .
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設定義在上的函數(shù)(, ),給出以下四個論斷:
①的周期為;②在區(qū)間上是增函數(shù);③的圖象關于點對稱;④的圖象關于直線對稱.以其中兩個論斷作為條件,另兩個論斷作為結(jié)論,寫出你認為正確的一個命題(寫成“”的形式)__________.(其中用到的論斷都用序號表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“累積凈化量(CCM)”是空氣凈化器質(zhì)量的一個重要衡量指標,它是指空氣凈化器從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示.根據(jù)GB/T18801﹣2015《空氣凈化器》國家標準,對空氣凈化器的累積凈化量(CCM)有如下等級劃分:
累積凈化量(克) | (3,5] | (5,8] | (8,12] | 12以上 |
等級 | P1 | P2 | P3 | P4 |
為了了解一批空氣凈化器(共2000臺)的質(zhì)量,隨機抽取n臺機器作為樣本進行估計,已知這n臺機器的
累積凈化量都分布在區(qū)間(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14],均勻分組,其中累積凈化量在(4,6]的所有數(shù)據(jù)有:4.5,4.6,5.2,5.7和5.9,并繪制了如下頻率分布直方圖.
(Ⅰ)求n的值及頻率分布直方圖中的x值;
(Ⅱ)以樣本估計總體,試估計這批空氣凈化器(共2000臺)中等級為P2的空氣凈化器有多少臺?
(Ⅲ)從累積凈化量在(4,6]的樣本中隨機抽取2臺,求恰好有1臺等級為P2的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)集X={x1,x2,…,xn}(其中xi>0,i=1,2,…,n,n≥3),若對任意的xk∈X(k=1,2,…,n),都存在xi,xj∈X(xi≠xj),使得下列三組向量中恰有一組共線:
①向量(xi,xk)與向量(xk,xj);②向量(xi,xj)與向量(xj,xk);③向量(xk,xi)與向量(xi,xj),則稱X具有性質(zhì)P。例如{1,2,4}具有性質(zhì)P。
(1)若{1,3,x)具有性質(zhì)P,則x的取值為________;
(2)若數(shù)集{1,3,x1,x2}具有性質(zhì)P,則x1+x2的最大值與最小值之積為________。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某某車站在春運期間為了改進服務,隨機抽樣調(diào)查了100名旅客從開始在購票窗口排隊到購到車票所用的時間t(以下簡稱購票用時,單位:min).下面是這次抽樣的頻率分布表和頻率分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 | |
一組 | 0≤t<5 | 0 | 0 |
二組 | 5≤t<10 | 10 | |
三組 | 10≤t<15 | 10 | 0.10 |
四組 | 15≤t<20 | ||
五組 | 20≤t<25 | 30 | 0.30 |
合計 | 100 | 1.00 |
(1)這次抽樣的樣本容量是多少?
(2)在表中填寫缺失的數(shù)據(jù)并補全頻率分布直方圖.
(3)旅客購票用時的平均數(shù)可能落在哪一個小組?
(4)若每增加一個購票窗口可使平均購票用時縮短5 min,要使平均購票用時不超過10 min,那么你估計最少要增加幾個窗口?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,算得, ,
,
(1).求家庭的月儲蓄對月收入的線性回歸方程;
(2).判斷變量與之間的正相關還是負相關;
(3).若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:回歸直線的斜率和截距的最小二乘估計公式分別為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com