【題目】在正方體ABCD-A1B1C1D中,M為DD1的中點(diǎn),O為AC的中點(diǎn),AB=2.

I求證:BD1∥平面ACM;

求證:B1O⊥平面ACM;

求三棱錐O-AB1M的體積.

【答案】)(詳見解析;.

【解析】

試題分析:要證明線面平行,可先證明線線平行,連接BD,MO,根據(jù)三角形中位線的平行關(guān)系可證明;要證明線面垂直,根據(jù)判定定理,可證明線與平面內(nèi)的兩條相交直線垂直,即證明;將四面體的體積轉(zhuǎn)化為以三角形當(dāng)?shù)酌?/span>,AO是四面體的高的幾何體的體積,這樣易計(jì)算四面體的體積.

試題解析:I證明:

連結(jié)BD,設(shè)BD與AC的交點(diǎn)為O,

∵AC,BD為正方形的對(duì)角線,故O為BD中點(diǎn);

連結(jié)MO,

∵O,M分別為DB,DD1的中點(diǎn),

∴OM∥BD1,…2分

∵OM平面ACM,BD1平面ACM…3分

∴BD1∥平面ACM. 4分

II∵AC⊥BD,DD1⊥平面ABCD,且AC平面ABCD,

∴AC⊥DD1;且BD∩DD1=D,∴AC⊥平面BDD1B16分

OB1平面BDD1B1,∴B1O⊥AC,…7分

連結(jié)B1M,在△B1MO中

∴B1O⊥OM…10分

又OM∩AC=O,∴B1O⊥平面AMC; 11分

II V=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線的斜率為

1的值;

2若存在,使得,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)路上所需時(shí)間單位:分鐘,并將所得數(shù)據(jù)繪制成頻率分布直方圖如圖,其中,上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,.

1求直方圖中的值;

2如果上學(xué)路上所需時(shí)間不少于60分鐘的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,請(qǐng)估計(jì)學(xué)校1000名新生中有多少名學(xué)生可以申請(qǐng)住宿;

3現(xiàn)有6名上學(xué)路上時(shí)間小于分鐘的新生,其中2人上學(xué)路上時(shí)間小于分鐘. 從這6人中任選2人,設(shè)這2人中上學(xué)路上時(shí)間小于分鐘人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,,,平面平面相交于點(diǎn).

(1)求證:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角梯形所在的平面垂直于平面,.

1在直線上是否存在一點(diǎn),使得平面?請(qǐng)證明你的結(jié)論.

2求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生接受能力依賴于老師引入概念和描述問題所用的時(shí)間,講座開始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持理想的狀態(tài),隨后學(xué)生的注意力開始分散,分析結(jié)果和實(shí)驗(yàn)表明,用表示學(xué)生掌握和接受概念的能力(的值越大,表示接受能力越強(qiáng)),表示提出和講授概念的時(shí)間(單位:分),可以有以下公式:

(1)開講多少分鐘后,學(xué)生的接受能力最強(qiáng)?能維持多少分鐘?

(2)開講5分鐘與開講20分鐘比較,學(xué)生的接受能力何時(shí)強(qiáng)一些?

(3)一個(gè)數(shù)學(xué)難題,需要55的接受能力以及13分鐘的時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),解關(guān)于的不等式;

(2)若關(guān)于的不等式的解集是,求實(shí)數(shù)、的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面是正三角形,且與底面垂直,底面是邊長(zhǎng)為2的菱形, 的中點(diǎn),過三點(diǎn)的平面交 的中點(diǎn),求證:

(1)平面;

(2)平面;

(3)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),命題,命題

當(dāng)時(shí),試判斷命題是命題的什么條件;

的取值范圍,使命題是命題的一個(gè)必要但不充分條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案