【題目】某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
(1)根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
(2)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品.現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.
附:.
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
【答案】(1)有95%的把握(2)
【解析】分析:(1)將列聯(lián)表中的數(shù)據(jù),代入公式,求得的值,即可做出判斷;
(2)從名數(shù)學(xué)教師中任選人,列舉出所有的基本事件的總數(shù),即可利用古典概型及概率的計(jì)算公式求解.
詳解:解(1)將2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得
χ2==≈4.762.
由于4.762>3.841,所以有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”..
(2)從5名數(shù)學(xué)系學(xué)生中任取3人的一切可能結(jié)果所組成的基本事件空間Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b2,b3),(a1,b1,b3),(a2,b1,b2),(a2,b2,b3),(a2,b1,b3),(b1,b2,b3)}.
其中ai表示喜歡甜品的學(xué)生,i=1,2.bj表示不喜歡甜品的學(xué)生,j=1,2,3.Ω由10個(gè)基本事件組成,且這些基本事件的出現(xiàn)是等可能的..
用A表示“3人中至多有1人喜歡甜品”這一事件,則
A={(a1,b1,b2),(a1,b2,b3),(a1,b1,b3),(a2,b1,b2),(a2,b2,b3),(a2,b1,b3),(b1,b2,b3)}.
事件A是由7個(gè)基本事件組成,因而P(A)=...
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期為π,且圖象上的一個(gè)最低點(diǎn)為M( ).
(1)求f(x)的解析式及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,]時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地要經(jīng)過(guò)3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為 , , .
(Ⅰ)設(shè)X表示一輛車(chē)從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車(chē)獨(dú)立地從甲地到乙地,求這2輛車(chē)共遇到1個(gè)紅燈的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前n項(xiàng)和為, , ,數(shù)列滿(mǎn)足: , , ,數(shù)列的前n項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;
(2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和;
(3)記集合,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次趣味校園運(yùn)動(dòng)會(huì)的頒獎(jiǎng)儀式上,高一、高二、高三代表隊(duì)人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會(huì)組委會(huì)在頒獎(jiǎng)過(guò)程中穿插抽獎(jiǎng)活動(dòng),并用分層抽樣的方法從三個(gè)代表隊(duì)中共抽取20人在前排就座,其中高二代表隊(duì)有6人.
(1)求n的值;
(2)把在前排就座的高二代表隊(duì)6人分別記為a,b,c,d,e,f,現(xiàn)隨機(jī)從中抽取2人上臺(tái)抽獎(jiǎng).求a和b至少有一人上臺(tái)抽獎(jiǎng)的概率;
(3)抽獎(jiǎng)活動(dòng)的規(guī)則是:代表通過(guò)操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該代表中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求該代表中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視傳媒公司為了了解某地區(qū)電視觀(guān)眾對(duì)某類(lèi)體育節(jié)目的收視情況,隨機(jī)抽取了名觀(guān)眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀(guān)眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖,將日均收看該體育節(jié)目時(shí)間不低于分鐘的觀(guān)眾稱(chēng)為體育迷.
(1)以頻率為概率,若從這名觀(guān)眾中隨機(jī)抽取名進(jìn)行調(diào)查,求這名觀(guān)眾中體育迷人數(shù)的分布列;
(2)若抽取人中有女性人,其中女體育迷有人,完成答題卡中的列聯(lián)表并判斷能否在犯錯(cuò)概率不超過(guò)的前提下認(rèn)為是體育迷與性別有關(guān)系嗎?
附表及公式:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|<0}.
(1)當(dāng)a=3時(shí),求A∩B;
(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的左焦點(diǎn)為F1(﹣ ,0),e= . (Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,設(shè)R(x0 , y0)是橢圓C上一動(dòng)點(diǎn),由原點(diǎn)O向圓(x﹣x0)2+(y﹣y0)2=4引兩條切線(xiàn),分別交橢圓于點(diǎn)P,Q,若直線(xiàn)OP,OQ的斜率存在,并記為k1 , k2 , 求證:k1k2為定值;
(Ⅲ)在(Ⅱ)的條件下,試問(wèn)OP2+OQ2是否為定值?若是,求出該值;若不是,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com