在國(guó)內(nèi)投遞外埠平信,每封信不超過(guò)20克付郵資80分,超過(guò)20克不超過(guò)40克付郵資160分,超過(guò)40克不超過(guò)60克付郵資240分,依此類推,寫出郵資y分關(guān)于每封x克(0<x≤100)的信的函數(shù)解析式,在坐標(biāo)系中作出函數(shù)圖象.
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,函數(shù)的定義域是{x|0<x≤100},根據(jù)規(guī)則,可得以x為自變量的函數(shù)y的解析式,從而畫出這個(gè)函數(shù)的圖象.
解答: 解:函數(shù)的解析式為y=
80,0<x≤20
160,20<x≤40
240,40<x≤60
320,60<x≤80
400,80<x≤100

由上述的函數(shù)解析式,可以得到其圖象如圖所示.
圖象是6條線段(不包括左端點(diǎn)),都平行于x軸,如圖所示.
點(diǎn)評(píng):本題主要考考查了分段函數(shù)的圖象的畫法,如何分段是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|2x-a|+5x.
(Ⅰ)求不等式f(x)>5x+1的解集.
(Ⅱ)若不等式f(x)≤0的解集為{x|x≤-1},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={y|y=x2-4x+3,x∈R},N={y|y=-x2+2x+8,x∈R},求:M∪N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l經(jīng)過(guò)直線x-2y-3=0與4x-3y+3=0的交點(diǎn),且被圓x2+(y+2)2=25所截得的弦長(zhǎng)為4
5
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明函數(shù)y=x2+1在[1,3]上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上的動(dòng)點(diǎn)R(x,y)及兩定點(diǎn)A(-2,0),B(2,0),直線RA、RB斜率分別為k1、k2,且k1•k2=-
3
4
,設(shè)動(dòng)點(diǎn)R的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過(guò)點(diǎn)S(4,0)的直線與曲線C交于M,N兩點(diǎn),過(guò)點(diǎn)M作MQ⊥x軸,交曲線C于點(diǎn)Q.求證:直線NQ過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求經(jīng)過(guò)兩條直線2x+y-8=0與x-2y+1=0的交點(diǎn),且在y軸上的截距為x軸上截距2倍的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2sin(2x+
π
3
)-1,x∈[0,
π
3
]的值域?yàn)閇-1,1],當(dāng)y取最大值時(shí),x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若球O1、球O2的表面積之比
S1
S2
=4,則它們的半徑之比
R1
R2
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案