精英家教網 > 高中數學 > 題目詳情
已知偶函數f(x),對任意x1,x2∈R,恒有f(x1+x2)=f(x1)+f(x2)+2x1x2+1.求:
(1)f(0),f(1),f(2)的值;
(2)f(x)的表達式;
(3)F(x)=[f(x)]2-2f(x)在(0,+∞)上的最值.
考點:抽象函數及其應用
專題:函數的性質及應用
分析:(1)直接令x1=x2=0得:f(0)=-1;同樣x1=0,x2=1得:f(1)=0;令x1=x2=1得:f(2)=3;
(2)直接根據f[x+(-x)]=f(x)+f(-x)+2x(-x)+1以及f(x)=f(-x),f(0)=-1即可求出f(x);
(3)先求出其解析式,再利用其導函數即可得到在(0,+∞)上的單調性,即而得到最值.
解答: 解解:(1)直接令x1=x2=0得:f(0)=-1,
令x1=1,x2=-1得:f(1-1)=f(1)+f(-1)-2+1=2f(1)-1,
∵f(0)=-1,
∴f(1)=0,
令x1=x2=1得:f(2)=3;
(2)因為:f[x+(-x)]=f(x)+f(-x)+2x(-x)+1,
又f(x)=f(-x),f(0)=-1,
故f(x)=x2-1
(3))∵F(x)=[f(x)]2-2f(x)=x4-4x2+3,
∴F′(x)=4x3-8x=4x(x2-2)=4x(x+
2
)(x-
2
);
∴在(
2
,+∞)上F′(x)>0,在(0,
2
)上F′(x)<0
故函數F(x)在[
2
,+∞)上是增函數,在(0,
2
)上為減函數.
當x=
2
時,F(xiàn)(x)min=-1,F(xiàn)(x)無最大值.
點評:本題主要考查函數奇偶性與單調性的綜合.解決第一問的關鍵在于賦值法的應用.一般在見到函數解析式不知道而要求具體的函數值時,多用賦值法來解決.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合A={x|x=a2+1,a∈N+且x≤10},B={y|y=a2-2a+2,a∈N+且y≤10},求A∩B,A∪B.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)如圖,在正方體ABCD-A1B1C1D1中,點O為線段BD的中點.設點P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是(  )
A、[
3
3
,1]
B、[
6
3
,1]
C、[
6
3
2
2
3
]
D、[
2
2
3
,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l在極坐標系中的方程為θ=
π
4
,圓C在極坐標系中的方程為ρ=2cosθ,求圓C被直線l截得的弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題:
①命題?x2>1,x>1的否定是?x2≤1,x≤1;
②函數f(x)=
ax-1
ax+1
(a>0且a≠1)
在R上單調遞減;
③設f(x)是R上的任意函數,則f(x)+f(-x)是偶函數;
④定義在R上的函數f(x)對于任意x的都有f(x-2)=-
4
f(x)
,則f(x)為周期函數;
⑤已知冪函數f(x)=xα的圖象經過點(2,
2
2
)
,則f(4)的值等于
1
2

其中真命題的序號是
 
(把所有真命題的序號都填上).

查看答案和解析>>

科目:高中數學 來源: 題型:

等差數列{an}中a5=6,a1+a2+a3=9,記{an}的前n項和為Sn,令 bn=an•an+1.數列{
1
bn
}
的前n項和為Tn.(1)求an;
(2)求Sn;
(3)求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈(-1,1]時,f(x)=|x|,則y=f(x)與y=log7x的交點的個數為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數學 來源: 題型:

若f(x)=x2+2(a-1)x+2在(-∞,4)上是減函數,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入的x,y,N的值分別為1,2,3,則輸出的S=( 。
A、27B、81C、99D、577

查看答案和解析>>

同步練習冊答案