【題目】已知橢圓 )的左焦點為,離心率為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)為坐標原點, 為直線上一點,過的垂線交橢圓于, .當四邊形是平行四邊形時,求四邊形的面積。

【答案】(1) ;(2

【解析】試題分析:(1)由已知得: , ,所以,再由可得,從而得橢圓的標準方程. )橢圓方程化為.PQ的方程為,代入橢圓方程得: .面積,而,所以只要求出的值即可得面積.因為四邊形OPTQ是平行四邊形,所以,即.

再結(jié)合韋達定理即可得的值.

試題解析:(1)由已知得: ,所以

又由,解得,所以橢圓的標準方程為: .

2)橢圓方程化為.

T點的坐標為,則直線TF的斜率.

時,直線PQ的斜率,直線PQ的方程是

時,直線PQ的方程是,也符合的形式.

代入橢圓方程得: .

其判別式.

,

.

因為四邊形OPTQ是平行四邊形,所以,即.

所以,解得.

此時四邊形OPTQ的面積

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體,是底面對角線的交點.

求證:(1)

(2)CO∥面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某射擊運動員,每次擊中目標的概率都是0.8.現(xiàn)采用隨機模擬的方法估計該運動員射擊4次至少擊中3次的概率:先由計算器算出09之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標;因為射擊4,故以每4個隨機數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

據(jù)此估計,該射擊運動員射擊4次至少擊中3次的概率為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20172月底,90多所自主招生試點高校將陸續(xù)出臺2017年自主招生簡章,某校高三年級選取了在期中考試中成績優(yōu)異的100名學生作為調(diào)查對象,對是否準備參加2017年的自主招生考試進行了問卷調(diào)查,其中準備參加”“不準備參加待定的人數(shù)如表:

準備參加

不準備參加

待定

男生

30

6

15

女生

15

9

25

(1)在所有參加調(diào)查的同學中,在三種類型中用分層抽樣的方法抽取20人進行座談交流,則在準備參加”“不準備參加待定的同學中應各抽取多少人?

(2)準備參加的同學中用分層抽樣方法抽取6,從這6人中任意抽取2,求至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點.

(1)在棱上是否存在一點,使得,,,四點共面?若存在,指出點的位置并說明;若不存在,請說明理由;

(2)求點平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的4個圖像中,與所給3個事件最吻合的順序為

①我離開家后,心情愉快,緩慢行進,但最后發(fā)現(xiàn)快遲到時,加速前進;

②我騎著自行車上學,但中途車壞了,我修理好又以原來的速度前進;

③我快速的騎著自行車,最后發(fā)現(xiàn)時間充足,又減緩了速度.

A. ③①② B. ③④② C. ②①③ D. ②④③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,半圓C的極坐標方程為ρ=2cosθ,θ∈[0, ]
(1)求C的參數(shù)方程;
(2)設點D在半圓C上,半圓C在D處的切線與直線l:y= x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,求直線CD的傾斜角及D的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是雙曲線上一點, 分別是雙曲線的左、右頂點,直線的斜率之積為.

(1)求雙曲線的離心率;

(2)過雙曲線的右焦點且斜率為的直線交雙曲線于兩點, 為坐標原點, 為雙曲線上一點,滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對名小學六年級學生進行了問卷調(diào)查,并得到如下列聯(lián)表.平均每天喝以上為“常喝”,體重超過為“肥胖”.

常喝

不常喝

合計

肥胖

2

不肥胖

18

合計

30

已知在全部人中隨機抽取人,抽到肥胖的學生的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認為肥胖與常喝碳酸飲料有關?請說明你的理由;

(3)已知常喝碳酸飲料且肥胖的學生中恰有2名女生,現(xiàn)從常喝碳酸飲料且肥胖的學生中隨機抽取2人參加一個有關健康飲食的電視節(jié)目,求恰好抽到一名男生和一名女生的概率.

附:

查看答案和解析>>

同步練習冊答案