6.函數(shù)y=a|x|與y=x+a的圖象恰有兩個公共點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.(1,+∞)B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

分析 y=a|x|的圖在x軸上過原點(diǎn)是折線,關(guān)于y軸對稱;a>0時,y=x+a斜率為1,與y=a|x|交于第一、二象限,a<0時,y=x+a斜率為1,與y=a|x|交于第三、四象限,即可得答案.

解答 解:根據(jù)題意,y=a|x|的圖在x軸上過原點(diǎn)是折線,關(guān)于y軸對稱;
分兩種情況討論,①a>0時,過第一、二象限,y=x+a斜率為1,a>0時,過第一、二、三象限,若使其圖象恰有兩個公共點(diǎn),必有a>1;
②a<0時,y=a|x|過第三、四象限;而y=x+a過第二、三、四象限;若使其圖象恰有兩個公共點(diǎn),必有a<-1;
③a=0,顯然不成立.
綜上所述,a的取值范圍為{a|a<-1或a>1},
故選D.

點(diǎn)評 本題考查零點(diǎn)存在定理,考查分類討論的數(shù)學(xué)思想,正確分類討論是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.三角形ABC中,AB=2$\sqrt{3}$,BC=2,∠ACB=60°,則∠BAC=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=|x-4|-|x-2|,作出函數(shù)y=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知0<a≤$\frac{π}{2}$,設(shè)函數(shù)f(x)=$\frac{{{{2016}^{x+1}}+2014}}{{{{2016}^x}+1}}$+sinx(x∈[-a,a])的最大值為P,最小值為Q,則P+Q的值為4030.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,三棱柱ABC-A1B1C1中,BC垂直于正方形A1ACC1所在平面,AC=2,BC=1,D為AC中點(diǎn),E為線段BC1上的一點(diǎn)(端點(diǎn)除外),平面AB1E與BD交于點(diǎn)F
(Ⅰ)若E不是BC1的中點(diǎn),求證:AB1∥EF;
(Ⅱ)若E是BC1的中點(diǎn),求AE與平面BC1D所成角的正弦值;
(Ⅲ)在線段BC1上是否存在點(diǎn)E,使得A1E⊥CE,若存在,求出$\frac{BE}{E{C}_{1}}$的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖是一個幾何體的三視圖,則這個幾何體的體積為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知四棱錐P-ABCD的頂點(diǎn)都在球O的球面上,底面ABCD是矩形,AB=2AD=4,平面PAD⊥底面ABCD,△PAD為等邊三角形,則球面O的表面積為( 。
A.$\frac{32π}{3}$B.32πC.64πD.$\frac{64π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,曲線C上的點(diǎn)S(x,y)到點(diǎn)M(1,0)的距離與它到直線x=4的距離之比為$\frac{1}{2}$.
(1)求曲線C的方程;
(2)若點(diǎn)A(x1,y1)與點(diǎn)P(x2,y2)在曲線C上,x12+x22=4且點(diǎn)A在第一象限,點(diǎn)P在第二象限,點(diǎn)B與點(diǎn)A關(guān)于原點(diǎn)對稱,求三角形△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.運(yùn)行如圖所示的語句,則輸出的結(jié)果T=( 。
A.25B.125C.625D.1350

查看答案和解析>>

同步練習(xí)冊答案