設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),則上述方程有實根的概率為
3
4
3
4
分析:先求出基本事件的總數(shù),利用一元二次方程有實數(shù)根的充要條件即可得出要求事件包括基本事件的總數(shù),再利用古典概型的計算公式即可得出答案.
解答:解:先從0,1,2,3四個數(shù)中任取的一個數(shù)為a,再從0,1,2三個數(shù)中任取的一個數(shù)為b,共有4×3=12種選法.
其中能使關(guān)于x的一元二次方程x2+2ax+b2=0有實數(shù)根的az、b必須滿足△=4a2-4b2≥0,即|a|≥|b|,
共有以下9種選法:0,0;1,0;1,1;2,0;2,1;2,2;3,0;3,1;3,2.
因此所求的概率P=
9
12
=
3
4

故答案為
3
4
點評:熟練掌握一元二次方程有實數(shù)根的充要條件及古典概型的計算公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有關(guān)于x的一元二次方程x2-2ax+b2=0.
(1)若a是從0、1、2、3四個數(shù)中任取的一個數(shù),b是從0、1、2三個數(shù)中任取的一個數(shù),求上述方程沒有實根的概率.
(2)若a是從區(qū)間[0,3]內(nèi)任取的一個數(shù),b=2,求上述方程沒有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求方程有實根的概率.
(2)若a是從區(qū)間[0,t+1]任取的一個數(shù),b是從區(qū)間[0,t]任取的一個數(shù),其中t滿足2≤t≤3,求方程有實根的概率,并求出其概率的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.求上述方程有實根的概率;
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•河北區(qū)一模)設(shè)有關(guān)于x的一元二次方程x2+ax+b2=0
(Ⅰ)若a是從1,2,3,4,5五個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(Ⅱ)若a是從區(qū)間[1,5]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

同步練習(xí)冊答案