復(fù)數(shù)(2+i)(1-2i)的實部為
 
考點:復(fù)數(shù)的基本概念
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運算法則、實部的定義即可得出.
解答: 解:復(fù)數(shù)(2+i)(1-2i)=4-i,
其實部為4.
故答案為:4.
點評:本題考查了復(fù)數(shù)的運算法則、實部的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)將一個長為18cm的線段隨機地分成三段,則這三段能夠組成一個三角形的概率是多少?探索一個任意長的線段隨機地分成三段,則這三段能夠組成一個三角形的概率是多少?
(2)已知O為正方形ABCD的中心,現(xiàn)在正方形內(nèi)隨機地取一點P,求使△OPA為鈍角三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+3x(x>0)
x2-3x(x≤0)

(1)作出函數(shù)f(x)的圖象,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求集合M={m|使方程f(x)=m有三個不相等的實數(shù)根}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場搞促銷抽獎活動,規(guī)則如下:箱內(nèi)放有3枚白棋子和2枚黑棋子,顧客從中取出2枚棋子,如果兩位棋子都是黑棋子或者都是白棋子,則中獎.獎勵方法如下:若取出2枚黑棋子則中一等獎,獎勵價值100元的商品;若取出2枚白棋子中則中二等獎,獎勵價值50元的商品.求
(1)某人抽獎一次,中一等獎的概率;
(2)某人抽獎一次,中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有5名男生,4名女生排成一排,
(1)從中選出3人排成一排,有多少種排法?
(2)若男生甲不站排頭,女生乙不站排尾,則有多少種不同的排法?
(3)要求女生必須站在一起,有多少種不同的排法?
(4)若4名女生互不相鄰,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-x2+ax-4(a>0)對于x∈[1,3]恒小于或等于零.
(Ⅰ)求正數(shù)a的值所組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)+6=0的兩個根為x1、x2,若對任意x∈A及t∈[-1,1],不等式m2+tm-2+2
6
≥|x1-x|恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E是C1D1的中點,正方體棱長為2,求異面直線DE與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(ax)-
x-a
x
(a≠0)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間及最值;
(Ⅱ)求證:對于任意正整數(shù)n,均有1+
1
2
+
1
3
+…+
1
n
≥ln
en
n!
(e為自然對數(shù)的底數(shù));
(Ⅲ)當(dāng)a=1時,是否存在過點(1,-1)的直線與函數(shù)y=f(x)的圖象相切?若存在,有多少條?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

連擲兩次骰子分別得到點數(shù)m,n,向量
a
=(m,n),
b
=(-1,1),則
a
b
>0的概率是
 

查看答案和解析>>

同步練習(xí)冊答案