已知函數(shù)f(x)=mx2-mx-1.
(1)若對(duì)于x∈R,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍;
(2)若對(duì)于x∈[1,3],f(x)<5-m恒成立,求實(shí)數(shù)m的取值范圍.

(1)的取值范圍(2)的取值范圍

解析試題分析:(1)對(duì)于含二次項(xiàng)恒成立的問題,注意討論二次項(xiàng)系數(shù)是否為0,這是學(xué)生容易漏掉的地方.(2)恒成立問題一般需轉(zhuǎn)化為最值,利用單調(diào)性證明在閉區(qū)間的單調(diào)性.(3)一元二次不等式在上恒成立,看開口方向和判別式.(4)含參數(shù)的一元二次不等式在某區(qū)間內(nèi)恒成立的問題通常有兩種處理方法:一是利用二次函數(shù)在區(qū)間上的最值來處理;二是分離參數(shù),再去求函數(shù)的最值來處理,一般后者比較簡(jiǎn)單.
試題解析:解析(1)由題意可得m=0或?m=0或-4<m<0
?-4<m≤0.
故m的取值范圍為(-4,0].                               6分
(2)∵f(x)<-m+5?m(x2-x+1)<6,
∵x2-x+1>0,∴m<對(duì)于x∈[1,3]恒成立,
記g(x)=,x∈[1,3],
記h(x)=x2-x+1,h(x)在x∈[1,3]上為增函數(shù).則g(x)在[1,3]上為減函數(shù),  
∴[g(x)]min=g(3)=,  ∴m<.   所以m的取值范圍為.      3分
考點(diǎn):一元二次不等式恒成立的問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

若關(guān)于的不等式的解集為,則實(shí)數(shù)的值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)23-2x<0.53x-4,則x的取值集合是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若a>b>1,不等式<0的解集是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式存在實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)求不等式的解集
(2)若存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中.
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集為 ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

存在實(shí)數(shù),使得成立,則的取值范圍是___▲___

查看答案和解析>>

同步練習(xí)冊(cè)答案