5.設△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,若a=1,c=4$\sqrt{2}$且△ABC的面積為2,則sinC=( 。
A.$\frac{4}{41}$B.$\frac{4}{5}$C.$\frac{4}{25}$D.$\frac{4\sqrt{41}}{41}$

分析 S△ABC=$\frac{1}{2}acsinB$=2,可得sinB=$\frac{\sqrt{2}}{2}$.利用余弦定理可得:b2=a2+c2-2accosB=25或41,b=5或$\sqrt{41}$,利用正弦定理可得:$\frac{sinB}=\frac{c}{sinC}$,代入解出即可.

解答 解:∵S△ABC=$\frac{1}{2}acsinB$=$\frac{1}{2}×1×4\sqrt{2}×sinB$=2,∴sinB=$\frac{\sqrt{2}}{2}$.
∴b2=a2+c2-2accosB=$1+(4\sqrt{2})^{2}$-2×$1×4\sqrt{2}$×$(±\frac{\sqrt{2}}{2})$=25或41,
∴b=5或$\sqrt{41}$,
∴b=5.
由正弦定理可得:$\frac{sinB}=\frac{c}{sinC}$,
∴sinC=$\frac{4\sqrt{2}×\frac{\sqrt{2}}{2}}{5}$=$\frac{4}{5}$.
同理b=$\sqrt{41}$時,sinC=$\frac{4\sqrt{41}}{41}$.
故選:無答案.

點評 本題考查了正弦定理余弦定理、三角形的面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左、右焦點分別為F1、F2,過F1作圓x2+y2=a2的切線分別交雙曲線的左、右兩支于點B、C,且|BC|=|CF2|,則雙曲線的漸近線方程為( 。
A.y=±3xB.y=±2$\sqrt{2}$xC.y=±($\sqrt{3}$+1)xD.y=±($\sqrt{3}$-1)x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是矩形,截面A1BC是等邊三角形.  
(I)求證:AB=AC;
(Ⅱ)若AB⊥AC,平面A1BC⊥底面ABC,求二面角B-B1C-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在邊長為2的正方形ABCD內(nèi)部任取一點M,則滿足∠AMB<90°的概率為$1-\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=2cosx(sinx-cosx)+m(m∈R),將y=f(x)的圖象向左平移$\frac{π}{4}$個單位后得到y(tǒng)=g(x)的圖象,且y=g(x)在區(qū)間$[0,\frac{π}{4}]$內(nèi)的最大值為$\sqrt{2}$.
(Ⅰ)求實數(shù)m的值;
(Ⅱ)在△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,若$g(\frac{3}{4}B)=1$,且a+c=2,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.過拋物線C:x2=4y對稱軸上任一點P(0,m)(m>0)作直線l與拋物線交于A,B兩點,點Q是點P關(guān)于原點的對稱點.
(1)當直線l方程為x-2y+12=0時,過A,B兩點的圓M與拋物線在點A處有共同的切線,求圓M的方程
(2)設$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,證明:$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-λ$\overrightarrow{QB}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=alnx+x2(a為實數(shù)).
(Ⅰ)求函數(shù)f(x)在區(qū)間[1,e]上的最小值及相應的x值;
(Ⅱ)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,M,N分別為PB,CD的中點,二面角P-CD-A的大小為60°,AC=AD=$\sqrt{2}$,CD=PN=2,PC=PD.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求直線MN與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.4B.8C.16D.216

查看答案和解析>>

同步練習冊答案