已知函數(shù)(為常數(shù)),且在點處的切線平行于軸.
(1)求實數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間.
(1)
(2)數(shù)f ( x ) 的單調(diào)遞增區(qū)間為 (0,1) 和 (5,+ ∞ ),單調(diào)遞減區(qū)間為 (1 , 5 )
解析試題分析:解:(Ⅰ)∵,∴;又∵在點處的切線平行于軸,
∴,得. 5分
(Ⅱ)由(Ⅰ)知,∴; 8分
由得,或;由,. 10分
∴函數(shù)f ( x ) 的單調(diào)遞增區(qū)間為 (0,1) 和 (5,+ ∞ ),單調(diào)遞減區(qū)間為 (1 , 5 ). 12分
考點:函數(shù)的單調(diào)性
點評:主要是考查了導(dǎo)數(shù)的運用,以及函數(shù)單調(diào)區(qū)間的求解,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點;
(2) 設(shè),若對任意,有,求的取值范圍;
(3)在(1)的條件下,設(shè)是在內(nèi)的零點,判斷數(shù)列的增減性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),曲線在點處的切線方程為
(1)確定的值
(2)若過點(0,2)可做曲線的三條不同切線,求的取值范圍
(3)設(shè)曲線在點處的切線都過點(0,2),證明:當時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域為的函數(shù)是奇函數(shù).
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷函數(shù)的單調(diào)性;
(Ⅲ)若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中,區(qū)間
(Ⅰ)求的長度(注:區(qū)間的長度定義為);
(Ⅱ)給定常數(shù),當時,求長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) .
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若且對任意恒成立,試確定實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),函數(shù)的圖像與函數(shù)的圖像關(guān)于點對稱.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程有兩個不同的正數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com