12.定義min{a,b}=$\left\{\begin{array}{l}a,a≤b\\ b,a>b\end{array}$,若f(x)=min{$\sqrt{x}$,|${\frac{1}{2}$x-1}|},且直線y=m與y=f(x)的圖象有3個交點,橫坐標(biāo)分別為x1,x2,x3,則x1•x2•x3的最大值為1.

分析 作出函數(shù)f(x)的圖象,由圖象可求得符合條件的m的取值范圍,設(shè)0<x1<x2<2<x3,通過解方程可用m把x1,x2,x3分別表示出來,然后利用基本不等式即可求得x1•x2•x3的最大值.

解答 解:作出函數(shù)f(x)的圖象如圖所示:
由$\left\{\begin{array}{l}{y=\sqrt{x}}\\{y=-\frac{1}{2}x+1}\end{array}\right.$可解得A(4-2$\sqrt{3}$,2$\sqrt{3}$-2),
由圖象可得,當(dāng)直線y=m與f(x)圖象有三個交點時m的范圍為:0<m<2$\sqrt{3}$-2.
不妨設(shè)0<x1<x2<2<x3,
則由2$\sqrt{{x}_{1}}$=m得x1=$\frac{{m}^{2}}{4}$,由|x2-2|=2-x2=m,
得x2=2-m,由|x3-2|=x3-2=m,
得x3=m+2,且2-m>0,m+2>0,
∴x1•x2•x3=$\frac{{m}^{2}}{4}$•(2-m)•(2+m)=$\frac{1}{4}$•m2•(4-m2)≤$\frac{1}{4}$•$(\frac{{m}^{2}+4-{m}^{2}}{2})^{2}$=$\frac{1}{4}×4$=1,
當(dāng)且僅當(dāng)m2=4-m2.即m=$\sqrt{2}$時取得等號,
∴x1•x2•x3存在最大值為1.
故答案為:1.

點評 本題考查函數(shù)與方程的綜合運用,考查基本不等式在求函數(shù)最值中的應(yīng)用,考查數(shù)形結(jié)合思想,屬難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義在(0,+∞)上的可導(dǎo)函數(shù)f(x)滿足xf′(x)-f(x)=x,且f(1)=1.現(xiàn)給出關(guān)于函數(shù)f(x)的下列結(jié)論,正確的個數(shù)為(  )
①函數(shù)f(x)在$({\frac{1}{e},+∞})$上單調(diào)遞增
②函數(shù)f(x)的最小值為$-\frac{1}{e^2}$
③函數(shù)f(x)有且只有一個零點
④對于任意x>0,都有f(x)≤x2
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖所示,AB為⊙O的直徑,O為圓心,PB與⊙O相切于點B,PO交⊙O于點D,AD的延長線交PB于點C,若AB=2,PB=2$\sqrt{2}$,則BC=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知A(1,0)、B(0,1)、C(-3,-2)三點.
(1)求直線BC的方程;
(2)試判斷三角形ABC的形狀;
(3)求三角形ABC外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若正四棱錐的底面邊長為$2\sqrt{3}cm$,體積為4cm3,則它的側(cè)面積為8$\sqrt{3}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=($\frac{1}{3}$)x-log2x,實數(shù)a、b、c滿足f(a)f(b)f(c)<0(0<a<b<c),若實數(shù)x0是方程f(x)=0的一個解,那么下列不等式中,不可能成立的是( 。
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二次函數(shù)f(x)=ax2+bx的圖象過點(-4n,0),且f′(0)=2n,n∈N*
(Ⅰ)求f(x)的解析式;
(Ⅱ)若數(shù)列{an}滿足$\frac{1}{{{a_{n+1}}}}={f^'}(\frac{1}{a_n})$,且a1=4,求數(shù)列{an}的通項公式;
(Ⅲ)記bn=$\sqrt{{a_n}{a_{n+1}}}$,數(shù)列{bn}的前n項和Tn,求證:$\frac{4}{3}≤{T_n}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在平面直角坐標(biāo)系xOy中,F(xiàn)1,F(xiàn)2分別是橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點,頂點B的坐標(biāo)為(0,b),且△BF1F2是邊長為2的等邊三角形.
(1)求橢圓的方程;
(2)過右焦點F2的直線l與橢圓交于A,C兩點,記△ABF2,△BCF2的面積分別為S1,S2.若S1=2S2,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1=2,A1B⊥B1C
(Ⅰ)證明:A1C1⊥CC1
(Ⅱ)若A1B=2$\sqrt{3}$,在棱CC1上是否存在點E,使得二面角E-AB1-C的大小為30°若存在,求CE的長,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案