【題目】已知異面直線a,b所成角為60度,A為空間一點,則過點A與a,b都成60度角的直線有( )條.
A.4
B.3
C.2
D.1
【答案】B
【解析】解:先將異面直線a,b平移到點A,
則∠BAE=60°,∠EPD=120°,
且∠BAE的角平分線與a和b的所成角為30°,
而∠EAD的角平分線與a和b的所成角為60°
∵60°>30°,
∴當(dāng)使直線在面BAE的射影為∠BAE的角平分線時存在2條滿足條件,當(dāng)直線為∠EAD的角平分線時存在1條滿足條件,
∴直線與a,b所成的角相等且等于60°有且只有3條,
故選:B.
【考點精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識點,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的短軸長為2,以為中點的弦經(jīng)過左焦點,其中點不與坐標(biāo)原點重合,射線與以圓心的圓交于點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若四邊形是矩形,求圓的半徑;
(Ⅲ)若圓的半徑為2,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)是同一函數(shù)的是( )
A. 與
B. 與g(x)=2x﹣1
C.f(x)=x0與g(x)=1
D.f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線在處的切線方程;
(2)討論的單調(diào)性;
(3)設(shè)過兩點的直線的斜率為,其中、為曲線上的任意兩點,并且,若恒成立,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個結(jié)論中:
(1)如果兩個函數(shù)都是增函數(shù),那么這兩個函數(shù)的積運算所得函數(shù)為增函數(shù);
(2)奇函數(shù)f(x)在[0,+∞)上是增函數(shù),則f(x)在R上為增函數(shù);
(3)既是奇函數(shù)又是偶函數(shù)的函數(shù)只有一個;
(4)若函數(shù)f(x)的最小值是a,最大值是b,則f(x)值域為[a,b].
其中正確結(jié)論的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將52名志愿者分成A,B兩組參加義務(wù)植樹活動,A組種植150捆白楊樹苗,B組種植200捆沙棘樹苗.假定A,B兩組同時開始種植.
(1)根據(jù)歷年統(tǒng)計,每名志愿者種植一捆白楊樹苗用時小時,種植一捆沙棘樹苗用時小時.應(yīng)如何分配A,B兩組的人數(shù),使植樹活動持續(xù)時間最短?
(2)在按(1)分配的人數(shù)種植1小時后發(fā)現(xiàn),每名志愿者種植一捆白楊樹苗用時仍為小時,而每名志愿者種植一捆沙棘樹苗實際用時小時,于是從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹活動所持續(xù)的時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=3x+3.
(1)求點P(5,3)關(guān)于直線l的對稱點P′的坐標(biāo);
(2)求直線l1:x﹣y﹣2=0關(guān)于直線l的對稱直線l2的方程;
(3)已知點M(2,6),試在直線l上求一點N使得|NP|+|NM|的值最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,且 ,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)求證:方程f(x)=lnx至少有一根在區(qū)間(1,3).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在汶川大地震后對唐家山堰塞湖的搶險過程中,武警官兵準(zhǔn)備用射擊的方法引爆從湖壩上游漂流而下的一個巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨立的,且命中的概率都是.
(1)求油罐被引爆的概率;
(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為,求的分布列及.( 結(jié)果用分?jǐn)?shù)表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com