1.下列判斷正確的是①④(把正確的序號(hào)都填上).
①若函數(shù)f(x)的定義域?yàn)閇0,4],則函數(shù)f(x2)的定義域?yàn)閇-2,2];
②若函數(shù)f(x)在區(qū)間(-∞,0)上遞增,在區(qū)間[0,+∞)上也遞增,則函數(shù)f(x0必在R上遞增;
③若f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
④若函數(shù)f(x)=$\frac{{3}^{x}-{2}^{-x}}{{3}^{x}+{2}^{-x}}$,則函數(shù)f(x)在R上是奇函數(shù).

分析 ①利用函數(shù)定義域求解方法,可得結(jié)論;
②根據(jù)單調(diào)增函數(shù)的定義,即可判斷;
③先在直角坐標(biāo)系中分別畫出函數(shù)y=-2x+2和y=-2x2+4x+2的圖象,再利用函數(shù)f(x)的定義,取函數(shù)圖象靠下的部分作為函數(shù)f(x)的圖象,由圖數(shù)形結(jié)合即可得f(x)的最大值;
④利用奇函數(shù)的定義進(jìn)行判斷即可.

解答 解:①若函數(shù)f(x)的定義域?yàn)閇0,4],則0≤x2≤4,∴-1≤x≤2,∴函數(shù)f(x2)的定義域?yàn)閇-2,2],正確;
②若函數(shù)f(x)在區(qū)間(-∞,0)上遞增,在區(qū)間[0,+∞)上也遞增,則函數(shù)f(x)必在R上遞增,不正確,比如在0處右邊的圖象在坐標(biāo)圖象的下方;
③如圖,虛線為函數(shù)y=-2x+2和y=-2x2+4x+2的圖象,粗線為f(x)的圖象
由圖可知函數(shù)f(x)在x=0時(shí)取得最大值2,不正確
④若函數(shù)f(x)=$\frac{{3}^{x}-{2}^{-x}}{{3}^{x}+{2}^{-x}}$,則f(-x)=-f(x),即函數(shù)f(x)在R上是奇函數(shù),正確.
故答案為:①④.

點(diǎn)評(píng) 本題考查命題的真假判斷,考查函數(shù)的定義域、單調(diào)性、奇偶性,函數(shù)的最值,知識(shí)綜合性強(qiáng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在正方形OABC內(nèi),陰影部分是由兩曲線y=$\sqrt{x}$,y=x2(0≤x≤1)圍成,在正方形內(nèi)隨機(jī)取一點(diǎn),且此點(diǎn)取自陰影部分的概率是a,則函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x≥a)}\\{(\frac{1}{3})^{x}(x<a)}\end{array}\right.$的值域?yàn)閇-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知梯形ABCD內(nèi)接于圓O,AB∥CD,過點(diǎn)D作圓的切線交CA的延長(zhǎng)線于點(diǎn)F,且DF∥BC,如果CA=5,BC=4.
(Ⅰ) 求證:△AFD~△BCA;
(Ⅱ) 求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示,一個(gè)空間幾何體的正視圖和側(cè)視圖都是直徑為2的半圓,俯視圖是一個(gè)圓,那么這個(gè)幾何體的表面積為( 。
A.B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知一等差數(shù)列的前三項(xiàng)和為94,后三項(xiàng)和為116,各項(xiàng)和為280,則此數(shù)列的項(xiàng)數(shù)n為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采用隨機(jī)抽樣的方法抽取了40名學(xué)生(其中男女生人數(shù)恰好各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計(jì),按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:[0,5),[5,10),[10,15),[15,20),[20,25],得到如圖所示的頻率分布直方圖:

( I)寫出a的值;
( II)在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取3人,并用X表示其中男生的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知二次函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,且在[0,+∞)上為增函數(shù),則f(0),f(3),f(-4)的大小關(guān)系為f(0)<f(3)<f(-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若對(duì)任意b∈R,函數(shù)f(x)恒有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖所示,D是△ABC的AB邊上的中點(diǎn),則向量$\overrightarrow{CD}$=①(填寫正確的序號(hào)).
①$-\overrightarrow{BC}+\frac{1}{2}\overrightarrow{BA}$,②$-\overrightarrow{BC}-\frac{1}{2}\overrightarrow{BA}$,③$\overrightarrow{BC}-\frac{1}{2}\overrightarrow{BA}$,④$\overrightarrow{BC}+\frac{1}{2}\overrightarrow{BA}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案