1.已知拋物線y2=4x與雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$的一條漸近線交于點M(M異于原點),且點M到拋物線焦點的距離等于3,則雙曲線的離心率是( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

分析 由題設(shè)條件,利用拋物線的定義,確定M的坐標(biāo),再由雙曲線的漸近線方程能求出$\frac{a}$=$\sqrt{2}$,從而能求出雙曲線的離心率.

解答 解:由題設(shè)知,拋物線y2=4x的準線方程x=-1,
∵點M到拋物線焦點的距離為3,
∴M到拋物線的準線的距離為3,
∴M的橫坐標(biāo)為2,
代入拋物線方程,解得y=±2$\sqrt{2}$,
∴M(2,$±2\sqrt{2}$),
∵拋物線y2=4x與雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$的一條漸近線交于點M(M異于原點),
∴$\frac{a}$=$\sqrt{2}$,
∴e=$\frac{c}{a}$=$\sqrt{1+2}$=$\sqrt{3}$.
故選:D.

點評 本題考查雙曲線的離心率的求法,是中檔題,涉及到拋物線、雙曲線、漸近線等知識點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知二次函數(shù)y=ax2+(16-a3)x-16a2(a>0)的圖象與x軸交于A,B兩點,則線段AB長度最小值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°PA=PD=AD=2BC=2,CD=$\sqrt{3},PB=\sqrt{6}$,Q是AD的中點,M是棱PC上的點,且PM=3MC.
(Ⅰ)求證:平面PAD⊥底面ABCD;
(Ⅱ)求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)$\overrightarrow{e_1},\overrightarrow{e_2}$為單位向量,非零向量$\overrightarrow a=x\overrightarrow{e_1}+y\overrightarrow{e_2},x,y∈R$,若$\overrightarrow{e_1},\overrightarrow{e_2}$的夾角為$\frac{π}{4}$,則$\frac{|x|}{{\overrightarrow{|a|}}}$的最大值等于$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等比數(shù)列數(shù)列{an}的前n項和為Sn,公比q>0,S2=2a2-2,S3=a4-2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令${c_n}=\left\{\begin{array}{l}\frac{{{{log}_2}{a_n}}}{{{n^2}(n+2)}},n為奇數(shù)\\ \frac{n}{a_n},n為偶數(shù)\end{array}\right.$,Tn為數(shù)列{cn}的前n項和,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(-1)=0,且對任意實數(shù)x,均有x-1≤f(x)≤x2-3x+3恒成立.
(1)求函數(shù)的解析式;
(2)若關(guān)于x的不等式f(x)≤nx-1的解集非空,求實數(shù)n的取值集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖1,平面五邊形SABCD中SA=$\frac{\sqrt{15}}{2}$,AB=BC=CD=DA=2,∠ABC=$\frac{2π}{3}$,△SAD沿AD折起成.如圖2,使頂點S在底面的射影是四邊形ABCD的中心O,M為BC上一點,BM=$\frac{1}{2}$.

(1)證明:BC⊥平面SOM;
(2)求二面角A-SM-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,曲線ρ(2cosθ-sinθ)=3與ρ(cosθ+2sinθ)=-1的交點的極坐標(biāo)為$(\sqrt{2},\frac{7π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某校高二上期月考語文試題的連線題如下:
將中國四大名著與它們的作者連線,每本名著只能與一名作者連線,每名作者也只能與一本名著連
線.其得分標(biāo)準是:每連對一個得3分,連錯得-1分.

一名考生由于考前沒復(fù)習(xí)本知識點,所以對此考點一無所知,考試時只得隨意連線,現(xiàn)將該考生的
得分記作ξ.
(Ⅰ)求這名考生所有連線方法總數(shù);
(Ⅱ)求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案