如圖,動(dòng)圓D過定點(diǎn)A(0,2),圓心D在拋物線x2=4y上運(yùn)動(dòng),MN為圓D在x軸上截得的弦,當(dāng)圓心D運(yùn)動(dòng)時(shí),記|AM|=m,|AN|=n.
(Ⅰ)求證:|MN|為定值;
(Ⅱ)求
m2+n2
mn
的最大值.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)設(shè)圓心(a,
a2
4
),則圓為(x-a)2+(y-
a2
4
2=a2+(2-
a2
4
2,由此能證明|MN|=4.
(Ⅱ)令∠MAN=θ,由余弦定理,得16=m2+n2-2mncosθ,又由S△AMN=
1
2
mnsinθ-
1
2
|MN|yA
=4,得
16
mn
=2sinθ
,由此能求出當(dāng)θ=
π
4
時(shí),
m2+n2
mn
取最大值2
2
解答: (Ⅰ)證明:設(shè)圓心(a,
a2
4
),
則圓為(x-a)2+(y-
a2
4
2=a2+(2-
a2
4
2,
當(dāng)y=0時(shí),x=a±2,
∵M(jìn)N為圓D在x軸上截得的弦,
∴|MN|=4.
(Ⅱ)解:令∠MAN=θ,
由余弦定理,得16=m2+n2-2mncosθ,
又由S△AMN=
1
2
mnsinθ-
1
2
|MN|yA

=
1
2
×4×2=4

16
mn
=2sinθ
,
m2+n2
mn
=
m
n
+
n
m
=2(sinθ+cosθ)
=2
2
sin(θ+
π
4
≤2
2
,
∴當(dāng)θ=
π
4
時(shí),
m2+n2
mn
取最大值2
2
點(diǎn)評(píng):本題考查圓的弦長(zhǎng)為定值的證明,考查代數(shù)式的值的最大值的求法,解題時(shí)要認(rèn)真審題,注意函數(shù)與方程思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)函數(shù)f(x)=ln[(a-2)x2+2(a-2)x+4]的定義域?yàn)镽,求實(shí)數(shù)a的范圍;
(2)函數(shù)f(x)=ln[(a-2)x2+2(a-2)x+4]的值域?yàn)镽,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+
3
sinxcosx-
1
2

(1)求函數(shù)f(x)的最小正周期,單調(diào)遞減區(qū)間和圖象的對(duì)稱軸方程;
(2)當(dāng)x∈[-
π
4
,
π
3
],求函數(shù)f(x)的值域;
(3)已知銳角三角形ABC的三個(gè)內(nèi)角分別為A、B、C,若f(A-
π
6
)=1,BC=
7
,sinB=
21
7
,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極點(diǎn)與坐標(biāo)原點(diǎn)重合,極軸與x軸非負(fù)半軸重合,兩個(gè)坐標(biāo)系單位長(zhǎng)度相同,已知傾斜角為α的直線l的參數(shù)方程:
x=-1+tcosα
y=1+tsinα
(t為參數(shù)),曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(1)若直線l的斜率為-1,求直線l與曲線C交點(diǎn)的極坐標(biāo);
(2)設(shè)曲線C與直線l相交于A、B兩點(diǎn),且|AB|=2
3
,求tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+1)2+y2=16及定點(diǎn)N(1,0),點(diǎn)P是圓M上的動(dòng)點(diǎn),點(diǎn)Q在線段NP上,點(diǎn)G在線段MP上,且滿足
NP
=2
NQ
,
GQ
NP
=0.
(Ⅰ)求點(diǎn)G的軌跡C的方程;
(Ⅱ)是否存在不垂直于坐標(biāo)軸的直線l和(1)中所求軌跡C相交于不同兩點(diǎn)A,B,且滿足|NA|=|NB|,若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-mx+m2-19=0},B={y|y2-5y+6=0},C={z|z2+2z-8=0},是否存在實(shí)數(shù)m,同時(shí)滿足A∩B≠∅,A∩C=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求等差數(shù)列8,5,2的第10項(xiàng);
(2)-401是不是等差數(shù)列-5,-9,-13,…的項(xiàng)?如果是,是第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于正整數(shù)n≥2,用Tn表示關(guān)于x的一元二次方程x2+2ax+b=0有實(shí)數(shù)根的有序數(shù)組(a,b)的組數(shù),其中a,b∈{1,2,…,n2}(a和b可以相等);對(duì)于隨機(jī)選取的a,b∈{1,2,…,n}(a和b可以相等),記Pn為關(guān)于x的一元二次方程x2+2ax+b=0有實(shí)數(shù)根的概率.
(1)求T n2和P n2;
(2)求證:對(duì)任意正整數(shù)n≥2,有Pn>1-
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABCDEF中,底面ABCD是正方形,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,G和H分別是CE和CF的中點(diǎn).
(1)求證:平面AFC⊥平面BDEF;
(2)求證:平面BDGH∥平面AEF.

查看答案和解析>>

同步練習(xí)冊(cè)答案