(1)求等差數(shù)列8,5,2的第10項;
(2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?
考點:等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項公式求解.
解答: 解:(1)等差數(shù)列8,5,2的首項a1=8,公差d=-3,
∴a10=8+9×(-3)=-19.
(2)等差數(shù)列-5,-9,-13,…中,
a1=-5,d=-4,
∴an=-5+(n-1)×(-4)
=-4n-1,
令-4n-1=-401,得n=100.
∴-401是等差數(shù)列-5,-9,-13,…的第100項.
點評:本題考查等差數(shù)列的通項公式的應(yīng)用,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
4
+
y2
b2
=1(0<b<2)的左、右焦點分別為F1,F(xiàn)2,P,Q是橢圓C上的兩點.
(Ⅰ)若橢圓C過點(-
2
,1),求橢圓C的方程;
(Ⅱ)若以P,F(xiàn)1,Q,F(xiàn)2為頂點的四邊形是正方形,求b2的值;
(Ⅲ)在(Ⅰ)的條件下,若直線PQ過F1,且|PF1|=2|QF1|,求|PQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出函數(shù)y=
x-1
x+1
的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,動圓D過定點A(0,2),圓心D在拋物線x2=4y上運動,MN為圓D在x軸上截得的弦,當(dāng)圓心D運動時,記|AM|=m,|AN|=n.
(Ⅰ)求證:|MN|為定值;
(Ⅱ)求
m2+n2
mn
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,從頂點A1向底面ABC作垂線,垂足O恰好為AC邊的中點,四邊形A1ACC1為菱形,且∠A1AC=60°,在△ABC中,AB=BC=
2
,AB⊥BC.
(Ⅰ)求證:平面A1ACC1⊥平面ABC;
(Ⅱ)求直線A1C與平面A1AB所成角的正弦值;
(Ⅲ)在BC1上是否存在一點E,使得OE∥平面A1AB,若不存在,說明理由;若存在,確定點E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心為坐標(biāo)原點O,右焦點為F(1,0),短軸長為2.
(1)求橢圓C的方程;
(2)設(shè)直線l:y=kx+b與橢圓C交于A,B兩點,且OA⊥OB,求證直線l與以原點為圓心的定圓相切,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+2(a∈R),f′(x)為f(x)的導(dǎo)函數(shù).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若對一切的實數(shù)x,有f′(x)≥|x|-
3
4
成立,求a的取值范圍;
(Ⅲ)當(dāng)a=0時,在曲線y=f(x)上是否存在兩點A(x1,y1),B(x2,y2)(x1≠x2),使得曲線在A,B兩點處的切線均與直線x=2交于同一點?若存在,求出交點縱坐標(biāo)的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2n
1+x2
-x在(0,+∞)上的最小值是an(n∈N+))
(1)求數(shù)列{an}的通項公式.
(2)證明:
1
a12
+
1
a22
+
1
a32
+…+
1
an2
1
2

(3)在點列An(2n,an)….中是否存在兩點Ai,Aj 其中i,j∈N+,使直線AiAj的斜率為1,若存在,求出所有數(shù)對i,j,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(
1
2
x,試畫出函數(shù)f(x)的圖象.

查看答案和解析>>

同步練習(xí)冊答案