分析 根據(jù)三角形面積公式繼而正弦定理以及誘導(dǎo)公式,即可判斷.
解答 解:∵∠BAD+∠C=90°,
∴∠CAD+∠B=180°-(∠BAD+∠C)=90°,
設(shè)∠BAD=α,∠CAD=β,則∠C=90°-α,B=90°-β,
又D為BC中點,∴BD=CD,
∴S△ABD=S△ADC,
∴$\frac{1}{2}$cADsinα=$\frac{1}{2}$bADsinβ,
∴csinα=bsinβ,
∴ccosC=bcosB,
由正弦定理得sinCcosC=sinBcosB,
即sin2C=sin2B,
∴2B+2C=π或2B=2C,
∵△ABC為銳角三角形,
∴B=C,
故答案為:B=C
點評 此題考查了三角形形狀的判斷,涉及的知識有正弦定理,二倍角的正弦函數(shù)公式,誘導(dǎo)公式,以及等腰三角形的判定,利用了分類討論及數(shù)形結(jié)合的思想.由∠BAD+∠C=90°,根據(jù)三角形的內(nèi)角和定理得到剩下的兩角相加也為90°是本題的突破點.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{15},\frac{2}{5}$ | B. | $\frac{3}{14},\frac{3}{5}$ | C. | $\frac{1}{3},\frac{1}{5}$ | D. | $\frac{4}{5},\frac{4}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 4 | 5 | 6 | 7 | 8 |
y | 12 | 10 | 9 | 8 | 6 |
A. | -0.6 | B. | 0.6 | C. | -17.4 | D. | 17.4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com