【題目】若是素數(shù),證明存在0,1,2,…,的一個排列(,,…,),使得,,,…,.被除的余數(shù)各不相同.
【答案】見解析
【解析】
是素數(shù),由孫子定理,對每個,存在,使得
有解.
設(shè),并用表示被除的余數(shù),
則.
(1)首先證明,且時,.
這是因為,
,
.
(2)其次證明,.
否則,若,則,,
時,由于,有.
從而,有
. (2)
從(2),至少有一個,滿足,即. (3)
如果(3)取等號,則由(2)可知,對于,不但模長皆為2,而且輻角都應(yīng)相等.又利用(2)可知,則,這里,.再利用(1)可以看到次多項式當(dāng)時均為0,從而這多項式恒等于0.那么,
. (4)
由于,從而可以知道,,…,是一的次方根.
綜上所述,.
最大值中的最小值達(dá)到時,在復(fù)平面上,復(fù)數(shù),,…,所對應(yīng)的點是一個單位圓的內(nèi)接正邊形的個頂點.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國有一道古典數(shù)學(xué)名著——兩鼠穿墻:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻(連線與墻面垂直),大老鼠第一天進(jìn)一尺,以后每天加倍,小老鼠第一天也進(jìn)一尺,以后每天減半,那么兩鼠第幾天能見面.”假設(shè)墻厚16尺,如圖是源于該題思想的一個程序框圖,則輸出的( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=x+4,動圓⊙O:x2+y2=r2(1<r<2),菱形ABCD的一個內(nèi)角為60°,頂點A、B在直線l上,頂點C、D在⊙O上.當(dāng)r變化時,求菱形ABCD的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在時鐘的表盤上作9個的扇形,每一個都覆蓋4個數(shù)字,每兩個覆蓋的數(shù)字不全相同.求證:一定可以找到3個扇形,恰好覆蓋整個表盤.舉一個反例說明,作8個扇形將不具有上述性質(zhì).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輛汽車以千米小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),且.
(1)若汽車以120千米小時的速度行駛時,每小時的油耗為11.5升,欲使每小時的油耗不超過9升,求的取值范圍;
(2)求該汽車行駛100千米的油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=ax+1和拋物線y2=4x相交于不同的A,B兩點.
(Ⅰ)若a=-2,求弦長|AB|;
(Ⅱ)若以AB為直徑的圓經(jīng)過原點O,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】,,…,是一個數(shù)列,對每個,,.如果,兩數(shù)不同,寫;如果,兩數(shù)相同,寫.于是得到一個新數(shù)列,,…,,其中.重復(fù)上述方法,得到一個由0及1兩個數(shù)字組成的三角形數(shù)表,最后一行僅一個數(shù)字,求這張數(shù)字表中1的和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電視臺為了宣傳舉辦問答活動,隨機(jī)對該市15~65歲的人群抽樣了人,回答問題統(tǒng)計結(jié)果如圖表所示.
組號 | 分組 | 回答正確 | 回答正確的人數(shù) |
第1組 | 5 | 0.5 | |
第2組 | 0.9 | ||
第3組 | 27 | ||
第4組 | 0.36 | ||
第5組 | 3 |
(Ⅰ) 分別求出的值;
(Ⅱ) 從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(Ⅲ) 在(Ⅱ)的前提下,電視臺決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎,求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com