4.已知函數(shù)f(x)=|lnx|,g(x)=$\left\{\begin{array}{l}0,0<x≤1\\|{{x^2}-4}|-2,x>1\end{array}$,則方程|f(x)+g(x)|=1實根的個數(shù)為( 。
A.2B.3C.4D.5

分析 對x分類討論:當0<x≤1時,顯然可知有一實根;
當x>1時,方程可化為|x2-4|=1-lnx或|x2-4|=3-lnx,構(gòu)造函數(shù),畫出函數(shù)圖象,把方程問題轉(zhuǎn)換為函數(shù)交點問題,
利用數(shù)形結(jié)合思想判斷即可.

解答 解:當0<x≤1時,
f(x)=-lnx,g(x)=0,
∴|f(x)+g(x)|=|-lnx|=1有一實根;
當x>1時,
f(x)=lnx,g(x)=|x2-4|-2,
∴|f(x)+g(x)|=|lnx+g(x)|=1,
∴|x2-4|=1-lnx或|x2-4|=3-lnx,
分別畫出函數(shù)的圖象如圖:
,由圖可知共有3個交點,
故實根的個數(shù)為4個,
故選C.

點評 本題考查了對抽象函數(shù)分類問題和利用構(gòu)造函數(shù),把方程問題轉(zhuǎn)換為函數(shù)交點問題,通過數(shù)形結(jié)合思想解決實際問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知i是虛數(shù)單位,則復(fù)數(shù)z=i(1-i)的實部為(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)數(shù)列{an}的前n項和Sn=n2+n,則a4的值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.程序框圖如圖所示,其輸出S的結(jié)果是( 。
A.6B.24C.120D.720

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某學(xué)校高三年級800名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間.抽取其中50個樣本,將測試結(jié)果按如下方式分成五組:第一組[13,14);第二組[14,15)…第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)若成績小于14秒被認為優(yōu)秀,求該樣本在這次百米測試中優(yōu)秀的人數(shù);
(Ⅱ)請估計本年級這800人中第三組的人數(shù);
(Ⅲ)若樣本第一組只有一名女生,第五組只有一名男生,現(xiàn)從第一、第五組中各抽取一名學(xué)生組成一個實驗組,求在被抽出的2名學(xué)生中恰好為一名男生和一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知平面向量$\overrightarrow{m}$=(a,sinx),$\overrightarrow{n}$=(b,cosx),若函數(shù)f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$的最小值為-$\frac{7}{2}$,求:
(1)函數(shù)g(x)=23+f(x)的遞減區(qū)間;
(2)直線y=-$\frac{8}{3}$與函數(shù)y=f(x)在閉區(qū)間[0,π]上的圖象的所有交點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在等差數(shù)列{an}中,前11項和為S11,若a6+S11=12,則a2+a5+a7+a10的和為( 。
A.8B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.[x]表示不超過x的最大整數(shù),則下列算法中輸出的S=( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某程序框圖如圖所示,若輸出S=1,則判斷框中M為( 。
A.k<3?B.k≤3?C.k≤4?D.k>4?

查看答案和解析>>

同步練習(xí)冊答案