若三條直線l1:4x+y=4,l2:mx+y=0,l3:2x-3my=4不能圍成三角形,則實(shí)數(shù)m的取值最多有(  )
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)
考點(diǎn):兩條直線的交點(diǎn)坐標(biāo)
專題:直線與圓
分析:三直線不能構(gòu)成三角形時(shí)共有4種情況,即三直線中其中有兩直線平行或者是三條直線經(jīng)過同一個(gè)點(diǎn),在這四種情況中,分別求出實(shí)數(shù)m的值.
解答: 解:當(dāng)直線l1:4x+y=4 平行于 l2:mx+y=0時(shí),m=4.
當(dāng)直線l1:4x+y=4 平行于 l3:2x-3my=4時(shí),m=-
1
6

當(dāng)l2:mx+y=0 平行于 l3:2x-3my=4時(shí),-m=
2
3m
,此時(shí)方程無解.
當(dāng)三條直線經(jīng)過同一個(gè)點(diǎn)時(shí),把直線l1 與l2的交點(diǎn)(
4
4-m
,
-4m
4-m
)代入l3:2x-3my=4得:
8
4-m
-3m×
-4m
4-m
=4,解得  m=-1或m=
2
3

綜上,滿足條件的m有4個(gè),
故選:C
點(diǎn)評(píng):本題考查三條直線不能構(gòu)成三角形的條件,三條直線中有兩條直線平行或者三直線經(jīng)過同一個(gè)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線a,b是異面直線是指
①a∩b=∅,且a與b不平行;    
②a?面α,b?面β,且平面α∩β=∅;
③a?面α,b?面β,且a∩b=∅;
④不存在平面α,能使a?α且b?α成立.
上述結(jié)論正確的有( 。
A、①④B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=9x-
1
3x
+1
,且f(a)=3,則f(-a)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一箱產(chǎn)品中隨機(jī)地抽取一件產(chǎn)品,設(shè)事件A:“抽到的是一等品”,事件B:“抽到的是二等品”,事件C:“抽到的是三等品”,其中一等品和二等品為正品,其他均為次品,且已知P(A)=0.7,P(B)=0.1,P(C)=0.05,求下列事件的概率:
(I)事件D:“抽到的是二等品或三等品”;
(Ⅱ)事件E:“抽到的是次品”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=eax+3x的導(dǎo)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
x+1
x-1
(x≥3)的值域是(  )
A、(0,1]
B、[-1,0)
C、[-1,+∞)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

純虛數(shù)z滿足|z-2|=3,則純虛數(shù)z為( 。
A、±
5
i
B、
5
i
C、-
5
i
D、5或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a|g(x)=2x2-ax+3},集合B={a|f(x)=ax2+x-2有兩個(gè)不同的零點(diǎn)},且函數(shù)g(x)在區(qū)間[1,2]是單調(diào)函數(shù).
(1)若B集合為空集,求a的取值集合;
(2)在滿足(1)的條件下,求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5},集合A={1,2},B={2,3},則∁U(A∪B)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案