【題目】如圖,在三棱錐中,底面為正三角形,側(cè)棱垂直于底面,.若是棱上的點(diǎn),且,則異面直線所成角的余弦值為( )

A. B. C. D.

【答案】A

【解析】

C為原點(diǎn),CAx軸,在平面ABC中過作AC的垂線為y軸,CC1z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線A1E所成角的余弦值.

C為原點(diǎn),CAx軸,在平面ABC中過作AC的垂線為y軸,CC1z軸,建立空間直角坐標(biāo)系,

∵在三棱柱ABCA1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,

E,F分別是棱BB1,CC1上的點(diǎn),且BEB1E,

A1(4,0,6),E(2,2,3),A(4,0,0),

(﹣2,2,﹣3),(-4,0,6),

設(shè)異面直線所成角所成角為θ,

則cosθ

∴異面直線A1EAF所成角的余弦值為

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—5:不等式選講]

已知.

(1)若的解集為,求的值;

(2)若不等式恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點(diǎn)MN.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有A和B兩個(gè)盒子裝有大小相同的黃乒乓球和白乒乓球,A盒裝有2個(gè)黃乒乓球,2個(gè)白乒乓球;B盒裝有2個(gè)黃乒乓球,個(gè)白乒乓球. 現(xiàn)從A、B兩盒中各任取2個(gè)乒乓球.

(1)若,求取到的4個(gè)乒乓球全是白的概率;

(2)若取到的4個(gè)乒乓球中恰有2個(gè)黃的概率為, 求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只螞蟻在邊長分別為3,4,5的三角形區(qū)域內(nèi)隨機(jī)爬行,則其恰在離三個(gè)頂點(diǎn)距離都大于1的地方的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某單位的職工食堂中,食堂每天以元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以元/個(gè)的價(jià)格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了80個(gè)面包,以(單位:個(gè),)表示面包的需求量,(單位:元)表示利潤.

(1)求關(guān)于的函數(shù)解析式;

(2)根據(jù)直方圖估計(jì)利潤不少于元的概率;

(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過拋物線y24x的焦點(diǎn)F,且與拋物線相交于AB兩點(diǎn).

1)若AF4,求點(diǎn)A的坐標(biāo);

2)求線段AB的長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?

(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點(diǎn).

(1)如果直線過拋物線的焦點(diǎn),求的值;

(2)如果 ,證明:直線必過一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案