3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點為F1,F(xiàn)2,P為橢圓上一點,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值是2c2,其中$c=\sqrt{{a^2}-{b^2}}$.則橢圓的離心率是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

分析 設(shè)|PF1|=m,|PF2|=n,∠F1PF2=θ.$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=mncosθ≥2c2,在△PF1F2中,由余弦定理可得:4c2=m2+n2-2mncosθ,再利用橢圓的定義、基本不等式的性質(zhì)即可得出.

解答 解:設(shè)|PF1|=m,|PF2|=n,∠F1PF2=θ.
$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=mncosθ≥2c2,
在△PF1F2中,由余弦定理可得:4c2=m2+n2-2mncosθ,m+n=2a,
∴2mncosθ≥2mn-4c2=4c2,當(dāng)且僅當(dāng)m=n=a時取等號,
∴a2=4c2,
解得e=$\frac{c}{a}$=$\frac{1}{2}$,
故選:A.

點評 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、余弦定理、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)的部分圖象如圖所示,若不等式-2<f(x+t)<4的解集為(-1,2),則實數(shù)t的值為-1.(寫過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{m}$=($\sqrt{3}$,1),向量$\overrightarrow{n}$是與$\overrightarrow{m}$垂直的單位向量.若向量$\overrightarrow{n}$與向量(1.2)的夾角b銳角,且與向量$\overrightarrow{p}$=(x-y2,$\sqrt{3}$x)垂直,則t=y2+5x2+4的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=(x-1)2+1(x>1)的反函數(shù)為( 。
A.y=1+$\sqrt{x-1}$(x>1)B.y=1-$\sqrt{x-1}$(x>1)C.y=1+$\sqrt{x-1}$(x≥1)D.y=1-$\sqrt{x-1}$(x≥1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.${(-\frac{27}{8})}^{\frac{1}{3}}$-(-16)0+($\frac{2}{3}$)-2+$\frac{{log}_{9}64}{{log}_{3}4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+{cos^2}x$
(1)求函數(shù)的單調(diào)遞增區(qū)間
(2)在$△ABC中,f(A)=1,\overrightarrow{AB}•\overline{AC}=4$,求三角形的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=sinx(sinx+$\sqrt{3}$cosx).
(1)求f(x)的最小正周期和最大值;
(2)在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,若f($\frac{A}{2}$)=1,a=2$\sqrt{3}$,求三角形ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在自變量的同一變化過程中,下列命題中正確的是( 。
A.若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,則$\underset{lim}{x→{x}_{0}}$[f(x)+g(x)]不存在
B.若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,則$\underset{lim}{x→{x}_{0}}$[f(x)g(x)]不存在
C.$\underset{lim}{x→{x}_{0}}$$\frac{f(x)}{g(x)}$存在,且$\underset{lim}{x→{x}_{0}}$[g(x)]=0,則$\underset{lim}{x→{x}_{0}}$f(x)=0
D.若$\underset{lim}{x→{x}_{0}}$|f(x)|=|A|,$\underset{lim}{x→{x}_{0}}$f(x)=A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=secx?sinx的最小正周期T=π.

查看答案和解析>>

同步練習(xí)冊答案