A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
分析 設(shè)|PF1|=m,|PF2|=n,∠F1PF2=θ.$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=mncosθ≥2c2,在△PF1F2中,由余弦定理可得:4c2=m2+n2-2mncosθ,再利用橢圓的定義、基本不等式的性質(zhì)即可得出.
解答 解:設(shè)|PF1|=m,|PF2|=n,∠F1PF2=θ.
$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=mncosθ≥2c2,
在△PF1F2中,由余弦定理可得:4c2=m2+n2-2mncosθ,m+n=2a,
∴2mncosθ≥2mn-4c2=4c2,當(dāng)且僅當(dāng)m=n=a時取等號,
∴a2=4c2,
解得e=$\frac{c}{a}$=$\frac{1}{2}$,
故選:A.
點評 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、余弦定理、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=1+$\sqrt{x-1}$(x>1) | B. | y=1-$\sqrt{x-1}$(x>1) | C. | y=1+$\sqrt{x-1}$(x≥1) | D. | y=1-$\sqrt{x-1}$(x≥1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,則$\underset{lim}{x→{x}_{0}}$[f(x)+g(x)]不存在 | |
B. | 若$\underset{lim}{x→{x}_{0}}$f(x)和$\underset{lim}{x→{x}_{0}}$g(x)都不存在,則$\underset{lim}{x→{x}_{0}}$[f(x)g(x)]不存在 | |
C. | $\underset{lim}{x→{x}_{0}}$$\frac{f(x)}{g(x)}$存在,且$\underset{lim}{x→{x}_{0}}$[g(x)]=0,則$\underset{lim}{x→{x}_{0}}$f(x)=0 | |
D. | 若$\underset{lim}{x→{x}_{0}}$|f(x)|=|A|,$\underset{lim}{x→{x}_{0}}$f(x)=A. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com