分析 a1=1,an+1=1+$\frac{1}{2}$an,可得a2=$\frac{3}{2}$,a3=$\frac{7}{4}$,a4=$\frac{15}{8}$,a5=$\frac{31}{16}$.猜想an=$\frac{{2}^{n}-1}{{2}^{n-1}}$.下面給出證明:an+1=1+$\frac{1}{2}$an,變形為${a}_{n+1}-2=\frac{1}{2}({a}_{n}-2)$,利用等比數(shù)列的通項(xiàng)公式即可得出.
解答 解:∵a1=1,an+1=1+$\frac{1}{2}$an,
∴a2=$1+\frac{1}{2}$=$\frac{3}{2}$,
a3=$1+\frac{3}{4}$=$\frac{7}{4}$,a4=1+$\frac{7}{8}$=$\frac{15}{8}$,${a}_{5}=1+\frac{15}{16}$=$\frac{31}{16}$.
猜想an=$\frac{{2}^{n}-1}{{2}^{n-1}}$.
下面給出證明:an+1=1+$\frac{1}{2}$an,變形為${a}_{n+1}-2=\frac{1}{2}({a}_{n}-2)$,
∴數(shù)列{an-2}是等比數(shù)列,首項(xiàng)為-1,公比為$\frac{1}{2}$.
∴${a}_{n}-2=-(\frac{1}{2})^{n-1}$
∴an=$2-\frac{1}{{2}^{n-1}}$=$\frac{{2}^{n}-1}{{2}^{n-1}}$.
點(diǎn)評 本題考查了觀察分析猜想歸納問題的能力、等比數(shù)列的通項(xiàng)公式,考查了變形能力,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 21 | B. | 22 | C. | 23 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)在區(qū)間[1,2]或者[2,3]上有一個零點(diǎn) | |
B. | 函數(shù)f(x)在區(qū)間[1,2]、[2,3]上各有一個零點(diǎn) | |
C. | 函數(shù)f(x)在區(qū)間[1,3]上最多有兩個零點(diǎn) | |
D. | 函數(shù)f(x)在區(qū)間[1,3]上有可能有無數(shù)個零點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com