1.如圖,在凸四邊形ABCD中,AB=1,BC=$\sqrt{3}$,AC⊥CD,AC=CD.當(dāng)∠ABC=45°時(shí),對(duì)角線BD的長(zhǎng)為$\sqrt{7}$.

分析 設(shè)∠ACB=β,求出AC,sinβ,利用余弦定理,即可求出對(duì)角線BD的值.

解答 解:設(shè)∠ACB=β,
在△ABC中,由余弦定理得AC2=4-$\sqrt{6}$,
由正弦定理可得sinβ=$\frac{1}{\sqrt{2}AC}$.
在△BCD中,DB2=BC2+CD2-2BC•CD•cos(900+β)
=3+4-$\sqrt{6}$-2$\sqrt{3}$•CD•(-sinβ)
=7-$\sqrt{6}$+$\sqrt{6}$=7
∴DB=$\sqrt{7}$
故答案為:$\sqrt{7}$

點(diǎn)評(píng) 本題主要考查了余弦定理,勾股定理三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,考查了數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆山西臨汾一中高三10月月考數(shù)學(xué)(理)試卷(解析版) 題型:填空題

在數(shù)列中, ,且數(shù)列是等比數(shù)列,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆陜西漢中城固縣高三10月調(diào)研數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知函數(shù)

(1)設(shè),求的單調(diào)區(qū)間;

(2)若處取得極大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知△ABC的面積為1,tanB=$\frac{1}{2}$,tanC=2,求△ABC的三邊及△ABC外接圓的直徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)m,n∈R,若直線mx+ny=2與圓x2+y2=1相切,則m+n的取值范圍是( 。
A.[-2,2]B.[-∞,-2]∪[2,+∞)C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.(-∞,-2$\sqrt{2}$]∪[2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知圓M:x2+(y-2)2=1,Q是x軸上的動(dòng)點(diǎn),QA,QB分別切圓M于A,B兩點(diǎn).
(1)若$|{AB}|=\frac{{4\sqrt{2}}}{3}$,求|MQ|及直線MQ的方程;
(2)求證:直線AB恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.中國(guó)傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱美,如圖所示的太極圖是由黑白兩個(gè)魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)AB的周長(zhǎng)和面積同時(shí)平分的函數(shù)稱為這個(gè)圓的“優(yōu)美函數(shù)”,給出下列命題:
①對(duì)于任意一個(gè)圓B,其“優(yōu)美函數(shù)”有無(wú)數(shù)個(gè);
②函數(shù)f(x)=ln(x2+$\sqrt{{x}^{2}+1}$可以是某個(gè)圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)y=sinx可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對(duì)稱圖形.
其中正確的命題是( 。
A.①③B.①③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在四棱錐A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=$\sqrt{6}$,AC=CD=2,DE=BE=1.
(1)證明:DE⊥平面ACD;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x+2y≤1\\ 2x+y≥-1\\ x-y≤0\end{array}\right.$則z=4x+3y的最大值為$\frac{7}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案