A. | [-2,2] | B. | [-∞,-2]∪[2,+∞) | C. | [-2$\sqrt{2}$,2$\sqrt{2}$] | D. | (-∞,-2$\sqrt{2}$]∪[2$\sqrt{2}$,+∞) |
分析 由直線mx+ny=2與圓x2+y2=1相切,得m2+n2=4,從而mn≤$\frac{{m}^{2}+{n}^{2}}{2}$=2,進而(m+n)2=m2+n2+2mn≤4+2×2=8,由此能求出m+n的取值范圍.
解答 解:∵m,n∈R,直線mx+ny=2與圓x2+y2=1相切,
∴圓心(0,0)到直線的距離d=$\frac{|0+0-2|}{\sqrt{{m}^{2}+{n}^{2}}}$=1,
解得m2+n2=4,
∴mn≤$\frac{{m}^{2}+{n}^{2}}{2}$=2,
∴(m+n)2=m2+n2+2mn≤4+2×2=8,
∴-2$\sqrt{2}≤m+n≤2\sqrt{2}$.
∴m+n的取值范圍是[-2$\sqrt{2}$,2$\sqrt{2}$].
故選:C.
點評 本題考查代數(shù)和取值范圍的求法,考查直線方程、圓、點到直線的距離公式、基本不等式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學 來源:2017屆山西臨汾一中高三10月月考數(shù)學(理)試卷(解析版) 題型:解答題
如圖, 在四棱錐中, 底面,底面是直角梯形,
(1)在上確定一點,使得平面,并求的值;
(2)在(1)條件下, 求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆重慶市高三10月月考數(shù)學(文)試卷(解析版) 題型:選擇題
(改編)已知復數(shù),則復數(shù)在復平面上對應的點位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ③ | B. | ③④ | C. | ①③ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(cosA)>f(sinB) | B. | f(sinA)>f(cosB) | C. | f(cosA)≥f(sinB) | D. | f(sinA)≥f(cosB) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$ | B. | $\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AD}$ | C. | $\frac{1}{5}$$\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{AD}$ | D. | $\frac{2}{5}$$\overrightarrow{AB}$+$\frac{3}{5}$$\overrightarrow{AD}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com