考點:數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)先利用賦值法求得α,再利用數(shù)學歸納法證明成立,即得結(jié)論;
(Ⅱ)利用放縮法得當n≥2時,由a
n+1=a
n2+na
n+α得,a
n+1-2≥na
n-4≥2(a
n-2)>0,a
n-2≥2
n-2(a
2-4)>2
n-1,即
<
()n-1,
故
+
+…+
<1+
+
()2+…+
()n-1利用等比數(shù)列求和公式得出數(shù)列的和,即得結(jié)論成立.
解答:
解:(Ⅰ)當n=1時,a
1=3≥2×1=2成立,得α∈R,
當n=2時,a
2=12+α≥2×2,得α≥-8,
而當α≥-8時,若a
n≥2n,則a
n+1=a
n2+na
n+α≥(2n)
2+n×2n-8=2(n+1)+2n(3n-1)-10≥2(n+1),
∴α的取值范圍是[-8,+∞);
(Ⅱ)當α=-2時,
=1,
=
=
,
當n≥2時,由a
n+1=a
n2+na
n+α得,a
n+1-2≥na
n-4≥2(a
n-2)>0,
∴a
n-2≥2
n-2(a
2-2)>2
n-1,∴
<
()n-1,
∴
+
+…+
<1+
+
()2+…+
()n-1=2-
()n-1<2.
點評:本題主要考查遞推數(shù)列的性質(zhì)及等比數(shù)列求和、數(shù)學歸納法知識,考查恒成立問題的轉(zhuǎn)化及先猜后證和賦值法的運用能力,考查不等式的放縮等,綜合性強屬難題.