13.設(shè)集合A={-1,0,1},B={x|x>0},則A∩B={1}.

分析 直接由交集的運(yùn)算性質(zhì)計(jì)算得答案.

解答 解:A={-1,0,1},B={x|x>0},
則A∩B={-1,0,1}∩{x|x>0}={1}.
故答案為:{1}.

點(diǎn)評(píng) 本題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.(1)計(jì)算:27${\;}^{\frac{2}{3}}$-2${\;}^{lo{g}_{4}3}$×log2$\frac{1}{8}$+log23×log34;
(2)已知0<x<1,且x+x-1=3,求x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)a>0,b>0,且ab=a+4b+5,則ab的最小值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在Rt△AOB中,∠OAB=$\frac{π}{6}$,斜邊AB=4.Rt△AOC可以通過(guò)Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角,動(dòng)點(diǎn)D在斜邊AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當(dāng)VA-DOC:VA-BOC=1:2時(shí),求CD與平面AOB所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.兩條平行線2x+3y-5=0和2x+3y-2=0間的距離是$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)g(x)=x+$\frac{2}{x}$-2.
(1)證明:函數(shù)g(x)在[$\sqrt{2}$,+∞)上是增函數(shù);
(2)若不等式g(2x)-k•2x≥0在x∈[-1,1]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E是CD的中點(diǎn).
(1)求證:A1C∥平面AD1E;
(2)在對(duì)角線A1C上是否存在點(diǎn)P,使得DP⊥平面AD1E?若存在,求出CP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
(3)求三棱錐B1-AD1E體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=(a2-3a+3)ax是指數(shù)函數(shù),則a的值為( 。
A.1B.3C.2D.1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.“x<-1”是“x<-1或x>1”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

同步練習(xí)冊(cè)答案