分析 (Ⅰ)由題意,CO⊥AO,BO⊥AO,∠BOC是二面角B-AO-C是直二面角,從而CO⊥BO,進(jìn)而CO⊥平面AOB,由此能證明平面COD⊥平面AOB.
(Ⅱ)當(dāng)VA-DOC:VA-BOC=1:2時(shí),D為AB中點(diǎn),以O(shè)為原點(diǎn),OC為x軸,OB為y軸,OA為z軸,建立空間直角坐標(biāo)系O-xyz,利用向量法能求出CD與平面AOB所成角.
解答 證明:(Ⅰ)由題意,CO⊥AO,BO⊥AO,
∴∠BOC是二面角B-AO-C是直二面角,
又∵二面角B-AO-C是直二面角,∴CO⊥BO,
又∵AO∩BO=O,∴CO⊥平面AOB,
又CO?平面COD,∴平面COD⊥平面AOB.
解:(Ⅱ)當(dāng)VA-DOC:VA-BOC=1:2時(shí),D為AB中點(diǎn),
以O(shè)為原點(diǎn),OC為x軸,OB為y軸,OA為z軸,建立空間直角坐標(biāo)系O-xyz,如圖,
則B(0,2,0),A(0,0,2$\sqrt{3}$),C(2,0,0),D(0,1,$\sqrt{3}$),
∴$\overrightarrow{CD}$=(-2,1,$\sqrt{3}$),
平面AOB的法向量$\overrightarrow{n}$=(1,0,0),
設(shè)CD與平面AOB所成角為θ,
則sinθ=$\frac{|\overrightarrow{CD}•\overrightarrow{n}|}{|\overrightarrow{CD}|•|\overrightarrow{n}|}$=$\frac{2}{2\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
∴θ=45°.
∴CD與平面AOB所成角為45°.
點(diǎn)評(píng) 本題考查面面垂直的證明,考查線面角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{15}}{15}$ | B. | $\frac{\sqrt{15}}{15}$ | C. | $\frac{2\sqrt{15}}{15}$ | D. | $\frac{\sqrt{15}}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com