如圖,D為等腰三角形ABC底邊AB的中點,則下列等式恒成立的是( 。
A、
CA
CB
=0
B、
CD
AB
=0
C、
CA
CD
=0
D、
CD
CB
=0
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:由于D為等腰三角形ABC底邊AB的中點,可得CD⊥AB,即可得出
CD
AB
=0.
解答: 解:∵D為等腰三角形ABC底邊AB的中點,
∴CD⊥AB.
CD
AB
=0.
故選:B.
點評:本題考查了等腰三角形的性質(zhì)、向量垂直與數(shù)量積的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將1,2,3,4,5,6,7,8,這八個數(shù)分別填寫于一個圓周的八等分點上,使得圓周上任意兩個相鄰位置的數(shù)之和為質(zhì)數(shù),如果圓周旋轉(zhuǎn)后能重合的算作相同填法,那么不同的填法有(  )
A、4種B、8種
C、12種D、16種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x∈R|0<x<1},B={x∈R|(2x-1)(x+1)≤0},則(∁RA)∩B( 。
A、[0,
1
2
]
B、[-1,0]
C、[
1
2
,1]
D、(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a=sin2,b=cos2,則a,b的大小為( 。
A、a<bB、b<a
C、a=bD、不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,將無蓋正方體紙盒展開,直線AB,CD在原正方體中的位置關系是(  )
A、平行B、相交且垂直
C、異面D、相交成60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
AB
=
a
,
AC
=
b
,D為BC的中點,則
AD
為(  )
A、
1
2
a
+
1
2
b
B、
1
3
a
+
2
3
b
C、
1
2
a
-
1
2
b
D、
1
3
a
+
2
3
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,|AC|2=
BC
AC
BA
=(-2,-3),
BC
=(m,1),則m的值等于( 。
A、8
B、-8
C、
2
3
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ADF-BCE中,除DF、CE外,其他的棱長均為2,AB⊥AF,平面ABCD⊥平面ABEF,M,N分別是AC,BF上的中點.
(Ⅰ)求證:MN∥平面ADF;
(Ⅱ)求直線MN與平面ABCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-tx-1(e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)設不等式f(x)>-2tx-1的解集為M,且集合{x|0<x≤2}⊆M,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案