分析 (I)利用導(dǎo)數(shù)的幾何意義求出曲線f(x)過(guò)原點(diǎn)的切線斜率,結(jié)合函數(shù)圖象得出a的范圍;
(II)假設(shè)存在實(shí)數(shù)m滿足題意,則不等式lnx+$\frac{m}{x}$≤$\frac{{e}^{x}}{x}$在($\frac{1}{2}$,+∞)上恒成立.即m<ex-xlnx在($\frac{1}{2}$,+∞)上恒成立.令h(x)=ex-xlnx,求出導(dǎo)數(shù)和二階導(dǎo)數(shù),運(yùn)用零點(diǎn)存在性定理,結(jié)合基本不等式可得最值,進(jìn)而得到m的范圍和最大整數(shù).
解答 解:(I)設(shè)y=kx與f(x)的圖象相切,切點(diǎn)為(x0,y0),
則$\left\{\begin{array}{l}{\frac{1}{{x}_{0}}=k}\\{ln{x}_{0}={y}_{0}}\\{{y}_{0}=k{x}_{0}}\end{array}\right.$,解得x0=e,k=$\frac{1}{e}$.
∵函數(shù)f(x)與h(x)的圖象無(wú)公共點(diǎn),
∴a>$\frac{1}{e}$.
(II)假設(shè)存在實(shí)數(shù)m滿足題意,
則不等式lnx+$\frac{m}{x}$≤$\frac{{e}^{x}}{x}$在($\frac{1}{2}$,+∞)上恒成立.
即m<ex-xlnx在($\frac{1}{2}$,+∞)上恒成立.
令h(x)=ex-xlnx,則h'(x)=ex-lnx-1,
h′′(x)=ex-$\frac{1}{x}$,
∵h(yuǎn)′'(x)在($\frac{1}{2}$,+∞)上單調(diào)遞增,且h′′($\frac{1}{2}$)=$\sqrt{e}$-2<0,h'′(1)=e-1>0,
∴存在x0∈($\frac{1}{2}$,1),使得h′'(x0)=0,即e${\;}^{{x}_{0}}$-$\frac{1}{{x}_{0}}$=0,∴x0=-lnx0,
∴當(dāng)x∈($\frac{1}{2}$,x0)時(shí),h′(x)單調(diào)遞減;當(dāng)x∈(x0,+∞)時(shí),h′(x)單調(diào)遞增,
∴h′(x)的最小值h′(x0)=e${\;}^{{x}_{0}}$-lnx0-1=x0+$\frac{1}{{x}_{0}}$-1≥2-1=1>0,
∴h′(x)>0,∴h(x)在區(qū)間($\frac{1}{2}$,+∞)內(nèi)單調(diào)遞增.
∴m≤h($\frac{1}{2}$)=e${\;}^{\frac{1}{2}}$-$\frac{1}{2}$ln$\frac{1}{2}$=e${\;}^{\frac{1}{2}}$+$\frac{1}{2}$ln2=1.99525,
∴存在實(shí)數(shù)m滿足題意,且最大整數(shù)m的值為1.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程和單調(diào)區(qū)間、極值和最值,考查任意性和存在性問(wèn)題的解法,注意運(yùn)用轉(zhuǎn)化思想和構(gòu)造函數(shù)法,求出導(dǎo)數(shù)判斷單調(diào)性,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -256 | B. | 64 | C. | -64 | D. | 256 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3-8i | B. | -3-8i | C. | 3+8i | D. | -3+8i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 3 | 7 | 10 |
總計(jì) | 25 | 15 | 40 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com